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The SMAP Algorithm Theoretical Basis Documents (ATBDs) provide the physical and 

mathematical descriptions of algorithms used in the generation of SMAP science data 

products.  The ATBDs include descriptions of variance and uncertainty estimates and 

considerations of calibration and validation, exception control and diagnostics.  Internal 

and external data flows are also described.   

 

The SMAP ATBDs were reviewed by a NASA Headquarters review panel in January 

2012 with initial public release later in 2012.  The current version of this ATBD is 

Revision D.  The ATBDs may undergo additional version updates during the mission.   

 

Revision D dated June 6, 2018 contains the following updates from Revision C dated 

December 15, 2016:  

1. Updated ATBD revision numbers (letters) in list on p. 6. 

2. Added clarification footnote to SMAP Data Products Table on p. 13. 

3. Modified Sec. 4.1 on p. 31 to reflect the new water body correction procedure done in 

L1B_TB using the radiometer antenna pattern.   Deleted old Appendix 2 on water 

correction. 

4. Modified Sec. 6.2.1 on p. 52 to reflect the new procedure for calculating effective 

temperature.  

5. Modified Sec. 6.5.4 on p. 57 to indicate a new option to set the frozen soil flag using 

information generated from the SMAP radiometer data (see L3_FT_P ATBD).  

6. Added references to the L2_SM_P Data Release Version 5 Assessment Report on p. 

66, to the L2_SM_P_E Version 2 assessment report on p. 73, and to a L2_SM_P_E 

journal article on p. 73.  Associated document citations were added to the list of 

References on p. 78. 

7. Updated L2_SM_P output product data fields in Appendix 1.   

8. Added L2_SM_P_E output product data fields in new Appendix 2.    
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1. INTRODUCTION 

1.1 Background 

The Soil Moisture Active Passive (SMAP) mission is the first of the Earth observation 

satellites being developed by NASA in response to the National Research Council’s first 

Earth Science Decadal Survey, Earth Science and Applications from Space:  National 

Imperatives for the Next Decade and Beyond [1].  The Decadal Survey was released in 

2007 after a two-year study commissioned by NASA, NOAA, and USGS to provide them 

with prioritized recommendations for space-based Earth observation programs.  Factors 

including scientific value, societal benefit, and technical maturity of mission concepts were 

considered as criteria.  In 2008 NASA announced the formation of the SMAP project as a 

joint effort of NASA’s Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center 

(GSFC), with project management responsibilities at JPL.  Launched on January 31, 2015, 

SMAP is providing high resolution global mapping of soil moisture and freeze/thaw state 

every 2-3 days on nested 3, 9, and 36-km Earth grids [2].  Its major science objectives are 

to: 

•   Understand processes that link the terrestrial water, energy and carbon cycles; 

•   Estimate global water and energy fluxes at the land surface; 

•   Quantify net carbon flux in boreal landscapes; 

•   Enhance weather and climate forecast skill; 

•   Develop improved flood prediction and drought monitoring capability. 

1.2 Measurement Approach  

 

Table 1 is a summary of the SMAP instrument functional requirements derived from 

its science measurement needs.  The goal is to combine the attributes of the radar and 

radiometer observations (in terms of their spatial resolution and sensitivity to soil moisture, 

surface roughness, and vegetation) to estimate soil moisture at a resolution of 10 km and 

freeze-thaw state at a resolution of 1-3 km. 

 

The SMAP instrument incorporates an L-band radar and an L-band radiometer that 

share a single feedhorn and parabolic mesh reflector.  As shown in Figure 1, the reflector 

is offset from nadir and rotates about the nadir axis at 14.6 rpm (nominal), providing a 

conically scanning antenna beam with a surface incidence angle of approximately 40°.  The 

provision of constant incidence angle across the swath simplifies the data processing and 

enables accurate repeat-pass estimation of soil moisture and freeze/thaw change.  The 

reflector has a diameter of 6 m, providing a radiometer 3 dB antenna footprint of 40 km 

(root-ellipsoidal-area).  The real-aperture radar footprint is 30 km, defined by the two-way 

antenna beamwidth.  The real-aperture radar and radiometer data will be collected globally 

during both ascending and descending passes.  The SMAP baseline orbit parameters are: 

 

• Orbit Altitude:  685 km  (2-3 day average revisit globally and 8-day exact repeat) 

• Inclination:       98 degrees, sun-synchronous 

• Local Time of Ascending Node:  6 pm   (6 am descending local overpass time) 
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Table 1.  SMAP Mission Requirements 

Scientific Measurement Requirements Instrument Functional Requirements 

Soil Moisture: 

~ 0.04 cm3/cm3 volumetric accuracy  (1-sigma)  in 

the top 5 cm for vegetation water content ≤ 5 kg/m2 

Hydrometeorology at ~10 km resolution 

Hydroclimatology at  ~40 km resolution 

L-Band Radiometer (1.41 GHz): 

Polarization:  V, H, T3, and T4 

Resolution:    40 km 

Radiometric Uncertainty*:  1.3 K 

L-Band Radar (1.26 and 1.29 GHz): 

Polarization:  VV, HH, HV (or VH) 

Resolution:    10 km 

Relative accuracy*:  0.5 dB (VV and HH) 

Constant incidence angle** between 35° 

    and 50° 

Freeze/Thaw State: 

Capture freeze/thaw state transitions in integrated 

vegetation-soil continuum with two-day precision at 

the spatial scale of landscape variability (~3 km) 

L-Band Radar (1.26 GHz & 1.29 GHz):   

Polarization:  HH 

Resolution:    3 km 

Relative accuracy*: 0.7 dB  (1 dB per 

    channel if 2 channels are used) 

Constant incidence angle** between 35° 

    and 50° 

Sample diurnal cycle at consistent time of day 

    (6 am/6 pm Equator crossing); 

Global, ~3 day (or better) revisit; 

Boreal, ~2 day (or better) revisit 

Swath Width:  ~1000 km 

 

Minimize Faraday rotation (degradation  

   factor at L-band) 

Observation over minimum of three annual  

    cycles 

Baseline three-year mission life 

  * Includes precision and calibration stability     

** Defined without regard to local topographic variation 

 

 

On July 7, 2015, the High Power Amplifier of the SMAP radar experienced an anomaly 

which caused the radar to stop transmitting.  All subsequent attempts to power up the radar 

were unsuccessful.  The SMAP mission continues to produce high-quality science 

measurements supporting SMAP's objectives with its radiometer instrument.  After the 

failure of the SMAP radar, the SMAP project used a Backus-Gilbert optimal interpolation 

scheme which takes advantage of the SMAP radiometer oversampling on orbit to generate 

an enhanced radiometer-based soil moisture product posted on a 9 km grid (see Sec. 8.2).  

In addition, a new high-resolution active-passive disaggregation product combining the 

SMAP L-band radiometer data with Sentinel-1 C-band radar data has been released as a 

best-effort partial replacement of the SMAP L2/L3_SM_AP product. 
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Figure 1.  The SMAP mission concept consists of an L-band radar and radiometer sharing a single 

                spinning 6-m mesh antenna in a sun-synchronous dawn / dusk orbit. 

 

The SMAP radiometer measures the four Stokes parameters, V, H, T3, and T4 at 1.41 

GHz.  The T3-channel measurement can be used to correct for possible Faraday rotation 

caused by the ionosphere, although such Faraday rotation is minimized by the selection of 

the 6 am/6 pm sun-synchronous SMAP orbit.   

 

Anthropogenic Radio Frequency Interference (RFI), principally from ground-based 

surveillance radars, can contaminate both radar and radiometer measurements at L-band. 

Early measurements and results from ESA’s SMOS (Soil Moisture and Ocean Salinity) 

mission indicate that in some regions RFI is present and detectable.  The SMAP radar and 

radiometer electronics and algorithms have been designed to include features to mitigate 

the effects of RFI.  The SMAP radar utilizes selective filters and an adjustable carrier 

frequency in order to tune to predetermined RFI-free portions of the spectrum while on 

orbit.  The SMAP radiometer will implement a combination of time and frequency 

diversity, kurtosis detection, and use of T4 thresholds to detect and where possible mitigate 

RFI.   

 

SMAP observations will (1) improve our understanding of linkages between the Earth’s 

water, energy, and carbon cycles, (2) benefit many application areas including numerical 

weather and climate prediction, flood and drought monitoring, agricultural productivity, 
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human health, and national security, (3) help to address priority questions on climate 

change, and (4) potentially provide continuity with brightness temperature and soil 

moisture measurements from ESA’s SMOS (Soil Moisture Ocean Salinity) and NASA’s 

Aquarius missions.  The current SMAP data products are listed in Table 2  (as of December, 

2016).  In the SMAP prelaunch time frame, baseline algorithms were developed for 

generating (1) Level 1 calibrated, geolocated surface brightness temperature and radar 

backscatter measurements, (2) Level 2 and Level 3 surface soil moisture products both 

from radiometer measurements on a 36 km grid and from combined radar/radiometer 

measurements on a 9 km grid, (3) Level 3 freeze/thaw products from radar measurements 

on a 3 km grid, and (4) Level 4 surface and root zone soil moisture and Level 4 Net 

Ecosystem Exchange (NEE) of carbon on a 9 km grid.  Level 1 data are the instrument 

products; Level 2 data are surface soil moisture in half-orbit format;  Level 3 data are global 

daily composites of the Level 2 data; and Level 4 data combine the SMAP satellite 

observations with modeling to produce value-added products that support key SMAP 

applications and more directly address the driving science questions. 

The details of each SMAP data product will be described in an associated publicly-

available Algorithm Theoretical Basis Document (ATBD), which will be updated 

periodically as warranted.  SMAP data products are generated using algorithm software 

that converts lower level products to higher level products.  Each product has a designated 

baseline algorithm for its generation.  One or more algorithm options may be encoded in 

the software and evaluated along with the baseline algorithm.  The ATBDs describe the 

product algorithms and their implementation, prelaunch testing, and post-launch validation 

approaches. 

1.3 Scope and Rationale 

This document is the Algorithm Theoretical Basis Document (ATBD) for the SMAP 

radiometer-based surface soil moisture products: 

1. Level 2 Soil Moisture (L2_SM_P)  in half-orbit format.  

2. Level 3 Soil Moisture (L3_SM_P)  in the form of global daily composites. 

3. Level 2 Soil Moisture (L2_SM_P_E)  in half-orbit format (as of Dec., 2016).  

4. Level 3 Soil Moisture (L3_SM_P_E)  in the form of global daily composites (as of 

Dec., 2016). 

The L2/L3_SM_P_E products (Sec. 8.2) use the same soil moisture retrieval algorithms as 

the standard L2/L3_SM_P products, and so are covered by the algorithm descriptions and 

procedures described in this ATBD.  The complete list of SMAP data products is provided 

in Table 2.  The L2_SM_P and L3_SM_P products represent the surface soil moisture (0-

5 cm layer) derived from the SMAP radiometer as output on a fixed 36-km Earth grid.  This 

grid spacing is close to the approximate spatial resolution of 40 km of the SMAP 

radiometer footprint and permits nesting with the 3-km grid spacing of the SMAP radar-

derived products and the 9-km grid spacing of the L2_SM_A/P combined active/passive 

product and the L4_SM and L4_C products.  As of December, 2016, L2/3_SM_P includes 

both AM and PM retrieved soil moisture using the same retrieval algorithms.  The  L2/ 

L3_SM_P_E 0-5 cm soil moisture products are posted on a 9 km grid. 
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*SMAP radar products were no longer produced operationally after the SMAP radar failed on July 7, 2015.  

   The L2_SM_SP is a new product using Sentinel C-band radar data merged with SMAP radiometer data. 

1.4 SMAP Science Objectives and Requirements      

As mentioned, the SMAP science objectives are to provide new global data sets that 

will enable science and applications users to: 

 Understand processes that link the terrestrial water, energy and carbon cycles; 

 Estimate global water and energy fluxes at the land surface; 

 Quantify net carbon flux in boreal landscapes; 

 Enhance weather and climate forecast skill; 

 Develop improved flood prediction and drought monitoring capability. 

Table 2.   SMAP Data Products* 
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To resolve hydrometeorological water and energy flux processes and extend weather and 

flood forecast skill, a spatial resolution of 10 km and temporal resolution of 3 days are 

required.  To resolve hydroclimatological water and energy flux processes and extend 

climate and drought forecast skill, a spatial resolution of 40 km and temporal resolution of 

3 days are required.  To quantify net carbon flux in boreal landscapes, a spatial resolution 

of 3 km and temporal resolution of 2 days are required.  The SMAP mission will also 

validate a space-based measurement approach that could be used for future systematic 

hydrosphere state monitoring missions.  The SMAP L2/3_SM_P products will meet the 

needs of the hydroclimatology community, while the L2/L3_SM_P_E products will begin 

to address the needs of the hydrometeorology community. 

 

The SMAP mission Level 1 and Level 2 requirements state that: 

"The baseline science mission shall provide estimates of soil moisture in the top 5 cm 

of soil with an error of no greater than 0.04 cm3/cm3 (one sigma) at 10 km spatial resolution 

and 3-day average intervals over the global land area excluding regions of snow and ice, 

frozen ground, mountainous topography, open water, urban areas, and vegetation with 

water content greater than 5 kg/m2 (averaged over the spatial resolution scale)." 

L2-SR-347:  "SMAP shall provide a Level 2 data product (L2_SM_P) at 40 km spatial 

resolution representing the average soil moisture in the top 5 cm of soil." 

Although generated at a coarser 40-km spatial resolution, the L2/3_SM_P radiometer-

based data products should still meet the 0.04 cm3/cm3 volumetric soil moisture retrieval 

accuracy specified in the mission Level 1 requirements.  The SMAP Science Definition 

Team specified that data will be binned over annual and 6-month time domain periods 

(April-September, October-March) globally within the SMAP mask when assessing 

radiometer performance and mission success in terms of soil moisture retrieval accuracies.   

1.5 Document Outline 

This document contains the following sections:  Section 2 describes the basic physics 

of passive microwave remote sensing of soil moisture;  Section 3 provides a description of 

the SMAP L2_SM_P and L3_SM_P data products;  Section 4 introduces the baseline 

algorithm, along with other algorithm options;  Section 5 addresses the use of the SMAP 

Algorithm Testbed in assessing algorithm performance and estimating error budgets for 

each candidate algorithm;   Section 6 discusses the use of ancillary data and various flags;  

Section 7 presents procedures for downselecting to a baseline algorithm and for validating 

the data products; Section 8 includes brief descriptions of the 6 pm and 9 km products; 

Section 9 provides a list of references; and Appendices 1 and 2 contain the data fields for 

the L2_SM_P and L2_SM_P_E output products, respectively.  This ATBD will be updated 

as additional work is completed in the pre- and post-launch periods. 
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2.  PASSIVE REMOTE SENSING OF SOIL MOISTURE 

The microwave portion of the electromagnetic spectrum (wavelengths from a few 

centimeters to a meter) has long held the most promise for estimating surface soil moisture 

remotely.  Passive microwave sensors measure the natural thermal emission emanating 

from the soil surface.  The variation in the intensity of this radiation depends on the 

dielectric properties and temperature of the target medium, which for the near surface soil 

layer is a function of the amount of moisture present.  Low microwave frequencies (at L 

band or ~ 1 GHz) offer additional advantages:  (1) the atmosphere is almost completely 

transparent, providing all-weather sensing;  (2) transmission of signals from the underlying 

soil is possible through sparse and moderate vegetation layers (up to at least 5 kg/m2 of 

vegetation water content);  and (3) measurement is independent of solar illumination which 

allows for day and night observations. 

The microwave soil moisture community has several decades of experience in 

conducting experiments using ground-based and aircraft microwave sensors [3-6].  These 

early experiments examined the basic physical relationships between emissivity and soil 

moisture, determined the optimum frequencies and measurement configurations, and 

demonstrated the potential accuracies for soil moisture retrievals.  From these experiments 

a number of viable soil moisture retrieval algorithms have evolved, the most promising of 

which were explored in the Hydros OSSE (Observing System Simulation Experiment) [7] 

during the risk reduction phase of that project.  Hydros was a proposed Earth System 

Science Pathfinder-class microwave soil moisture mission selected by NASA as a backup 

mission at the time of the OCO and Aquarius selections in 2002.  Funding for Hydros 

ceased in 2005, but many of its risk reduction activities generated knowledge of direct 

relevance to SMAP.   Additionally, much work was conducted by European and other 

colleagues prior to the launch of SMOS in 2009 [8-11].  

2.1  Physics of the Problem 

As mentioned, a microwave radiometer measures the natural thermal emission coming 

from the surface.  At microwave frequencies, the intensity of the observed emission is 

proportional to the product of the temperature and emissivity of the surface (Rayleigh-

Jeans approximation).  This product is commonly called the brightness temperature TB.   If 

the microwave sensor is in orbit above the earth, the observed TB is a combination of the 

emitted energy from the soil as attenuated by any overlying vegetation, the emission from 

the vegetation, the downwelling atmospheric emission and cosmic background emission 

as reflected by the surface and attenuated by the vegetation, and the upwelling atmospheric 

emission (Figure 2).   

At L band frequencies, the atmosphere is essentially transparent, with the atmospheric 

transmissivity τatm ≈ 1.  The cosmic background Tsky is on the order of 2.7 K.  The 

atmospheric emission is also very small.  These small atmospheric contributions will be 

accounted for in the L1B_TB ATBD, since the primary inputs to the radiometer-derived 

soil moisture retrieval process described in this L2_SM_P ATBD are atmospherically-

corrected surface brightness temperatures as described in Section 3. 
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         Figure 2.   Contributions to the observed brightness temperature TB from orbit 

                                   [from SMOS ATBD, ref. 12] . 

 

Retrieval of soil moisture from SMAP surface TB observations is based on a well-

known approximation to the radiative transfer equation, commonly known in the passive 

microwave soil moisture community as the tau-omega model.  A layer of vegetation over 

a soil attenuates the emission of the soil and adds to the total radiative flux with its own 

emission.  Assuming that scattering within the vegetation is negligible at L band 

frequencies, the vegetation may be treated mainly as an absorbing layer.  A model 

following this approach to describe the brightness temperature of a weakly scattering layer 

above a semi-infinite medium was developed by [13] and described in [14].  The equation 

includes emission components from the soil and the overlying vegetation canopy [15]: 

𝑇𝐵𝑝 = 𝑇𝑠𝑒𝑝𝑒𝑥𝑝(−𝜏𝑝 sec 𝜃) + 𝑇𝑐(1 − 𝜔𝑝)[1 − 𝑒𝑥𝑝(−𝜏𝑝 sec 𝜃)][1 + 𝑟𝑝𝑒𝑥𝑝(−𝜏𝑝 sec 𝜃)]      (1) 
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where the subscript p refers to polarization (V or H), Ts is the soil effective temperature, Tc 

is the vegetation temperature, p is the nadir vegetation opacity, p is the vegetation single 

scattering albedo, and rp is the rough soil reflectivity.  The reflectivity is related to the 

emissivity (ep) by ep = (1 – rp), and p, rp and ep are values at the SMAP look angle of  = 

40°.  The transmissivity γ of the overlying canopy layer is γ = exp(-τp sec θ).  Equation (1) 

assumes that vegetation multiple scattering and reflection at the vegetation-air interface are 

negligible.  Surface roughness is modeled as rp rough = rp smooth exp (-hcosx θ) where the 

parameter h is assumed linearly related to the root-mean-square surface height [16-17] and 

x =0, 1, or 2.  Nadir vegetation opacity is related to the total columnar vegetation water 

content (VWC, in kg/m2) by p = bp*VWC with the coefficient bp dependent on vegetation 

type and microwave frequency (and polarization) [15]. 

If the air, vegetation, and near-surface soil are in thermal equilibrium, as is 

approximately the case near 6:00 am local time (the time of the SMAP descending pass), 

then Tc is approximately equal to Ts and the two temperatures can be replaced by a single 

effective temperature (Teff). Soil moisture can then be estimated from rp smooth using the 

Fresnel and dielectric-soil moisture relationships.   

The surface reflectance rp is defined by the Fresnel equations, which describe the 

behavior of an electromagnetic wave at a smooth dielectric boundary.  At horizontal 

polarization the electric field of the wave is oriented parallel to the reflecting surface and 

perpendicular to the direction of propagation.  At vertical polarization the electric field of 

the wave has a component perpendicular to the surface.  In the Fresnel equations below, θ 

is the SMAP incidence angle of 40ο and ε is the complex dielectric constant of the soil 

layer:             
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In terms of dielectric properties, there is a large contrast between liquid water (r  80) 

and dry soil (r  5).  As soil moisture increases, soil dielectric constant increases.  This 

leads to an increase in soil reflectivity or a decrease in soil emissivity (1 – rp).  Note that 

low dielectric constant is not uniquely associated with dry soil.  Frozen soil, independent 

of water content, has a similar dielectric constant to dry soil.  Thus, a freeze/thaw flag is 

needed to resolve this ambiguity.  As TB is proportional to emissivity for a given surface 

soil temperature, TB decreases in response to an increase in soil moisture.  It is this 

relationship between soil moisture and soil dielectric constant (and hence microwave 

emissivity and brightness temperature) that forms the physical basis of passive remote 

sensing of soil moisture.  Given SMAP observations of TB and information on Teff, h, τp, 

and ωp from ancillary sources (Section 6) or multichannel algorithm approaches (Section 

4), Equation (1) can be solved for the soil reflectivity rp, and equation (2) or (3) can be 
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solved for the soil dielectric ε.  Soil moisture can then be estimated using one of several 

dielectric models and ancillary knowledge of soil texture. 

2.2  Rationale for L-Band 

Within the microwave portion of the electromagnetic spectrum, emission from soil at 

L-band frequencies can penetrate through greater amounts of vegetation than at higher 

frequencies.  Figure 3 shows microwave transmissivity as a function of increasing biomass 

at L-band (1.4 GHz), C-band (6 GHz), and X-band (10 GHz) frequencies, based upon 

modeling.  The results clearly show that L-band frequencies have a significant advantage 

over the C- and X-band frequencies (and higher) provided by current satellite instruments 

such as AMSR-E and WindSat, and help explain why both SMOS and SMAP are utilizing 

L band sensors in estimating soil moisture globally over the widest possible vegetation 

conditions.  Another advantage of measuring soil moisture at L-band is that the microwave 

emission originates from deeper in the soil (typically 5 cm or so), whereas C- and X-band 

emissions originate mainly from the top 1 cm or less of the soil (Figure 4).   

Although the above arguments support the use of low frequencies, there is, however, a 

lower frequency limit for optimal TB measurements for soil moisture.  At frequencies lower 

than L-band, radiometric measurements are significantly degraded by manmade and 

galactic noise.  Since there is a protected band at L band at 1.4001.427 GHz that is 

allocated exclusively for radiometric use, the SMAP radiometer operates in this band. 

 
     Figure 3.   Vegetation transmissivity to soil emission at L-band frequencies (1.4 GHz) is much  

                        higher than at C- (6 GHz) or X-band (10 GHz) frequencies [adapted from 22].    
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     Figure 4.    L-band TB observations are sensitive to emission from deeper in the  

                        soil than at higher frequencies [adapted from 23].  Soil moisture curves 

                        are given for 10, 20, and 30% (or in absolute units, 100 x cm3/cm3). 

2.3  Soil Dielectric Models 

In the past few decades, a number of soil dielectric models have been developed by the 

passive microwave remote sensing community.  Although they differ in analytical forms, 

they generally share common dependence on soil moisture, soil texture, and frequency.  

The details of these models have been described thoroughly in the literature – a good 

summary can be found in [18, 19].  The SMAP project investigated the use of three 

different soil dielectric models:  

(1) Dobson [20] – a semi-empirical mixing model, the Dobson model retains the physical 

aspects of the dielectric properties of free water of the soil through the Debye equations 

while also using certain empirical fitting parameters based on the different soil types 

studied during the model’s development;  the model requires frequency, soil moisture, soil 

temperature, sand fraction, clay fraction, and bulk density as input parameters. 

(2) Wang & Schmugge  [21] – a central point of this empirical mixing model is the use of 

a transition point of water content beyond which the dielectric constant increases rapidly 

with soil moisture;  the model predicts and illustrates the substantial impact of bound water 

(as opposed to free water only) on soil dielectric constant.   

(3) Mironov [19] – formally known as the Mineralogy-Based Soil Dielectric Model 

(MBSDM);  using a large soil database, Mironov was able to obtain a set of regression 

equations to derive many of the spectroscopic parameters needed by a model that he 
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developed earlier;  the resulting model not only applies to a wider range of soil types, but 

also requires fewer input parameters – with clay percentage as the only soil input 

parameter.   

These three models have been widely used due to their simple parameterizations and 

applicability at L-band frequencies (1.26-1.41 GHz).  As part of SMAP prelaunch and post-

launch calibration/validation activities, the performance of these dielectric models in terms 

of bias and accuracy of the retrieved soil moisture was evaluated and a decision made on 

which dielectric model to carry forward into the operational production of SMAP data 

products. The SMAP L2_SM_P processing software has a switch which selects which 

dielectric model will be used in the soil moisture retrieval.  While all three dielectric models 

are coded in the SMAP software, L2_SM_P currently uses the Mironov model in routine 

processing.  For comparison, ESA’s SMOS mission currently uses land cover classification 

to choose the appropriate dielectric model (Dobson or Mironov).  Figure 5 gives an 

example of the performance of the three dielectric models when used in forward model 

computations of L band TB for θ = 40°, assuming smooth bare soils at TS = 25°C for 

different soil types. 
 

 

Figure 5.   Bare soil TB as computed by different soil dielectric models.  The selected soil types 

                  correspond to the top five most dominant soil texture classes, together accounting for 

                  over 80% of the global land area. 
 

2.4  Use of the 6:00 AM Descending Node Orbit for the Primary Mission Product 

The decision to place SMAP into a sun-synchronous 6:00 am / 6:00 pm orbit is based 

on a number of science issues relevant to the L2_SM_P product [24, 25].  Faraday rotation 
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is a phenomenon in which the polarization vector of an electromagnetic wave rotates as the 

wave propagates through the ionospheric plasma in the presence of the Earth's static 

magnetic field.  The phenomenon is a concern to SMAP because the polarization rotation 

increases as the square of wavelength.  If uncorrected, the SMAP polarized (H and V) 

radiometer measurements will contain errors that translate to soil moisture error.  Faraday 

rotation varies greatly during the day, reaching a maximum during the afternoon and a 

minimum in the pre-dawn hours.  By using TB observations acquired near 6:00 am local 

solar time as the primary input to the L2_SM_P product, the adverse impacts of Faraday 

rotation are minimized.  Faraday rotation correction to SMAP TB is described in the 

L1B_TB ATBD. 

At 6:00 am the vertical profiles of soil temperature and soil dielectric properties are 

likely to be more uniform [13] than at other times of the day (Figure 7).  This early morning 

condition will minimize the difference between canopy and soil temperatures and thermal 

differences between land cover types within a pixel (Figure 6).  These factors help to 

minimize soil moisture retrieval errors originating from the use of a single effective 

temperature to represent the near surface soil and canopy temperatures.  This same 

effective temperature can be used as the open water temperature in the water body 

correction to TB that will be discussed in Sections 3 and 4. 

 

 

         Figure 6.   Schematic showing diurnal variation in temperature and thermal 

                            crossover times at approximately 6:00 am / 6:00 pm local time for  

                            various broad classes of land surface covers [modified from 24].   
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Figure 7.  Soil temperature as a function of time based on June 2004 Oklahoma Mesonet data: 

                 (a) vertical profiles for a sod covered site and (b) the mean soil temperatures for  

                 bare soil (TB05, TB10) and sod (TS05, TS10).  The shaded region identifies the  

                 period of the day when these effects result in less than 1° C difference among the  

                 four temperatures  (T. Holmes, personal communication). 

 

Finally, it is desirable to establish a long-term climate data record of L-band brightness 

temperatures and soil moisture.  Such a data record could enable investigations of 

important trends in emissivity, soil moisture, and other derived variables occurring over 

annual to decadal periods.  Both the SMOS and Aquarius L-band missions will operate in 

6 am/6 pm orbits, and SMAP will extend these L-band data records. 

(b) 

(a) 
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As will be discussed in Section 3, the current approach to generation of the baseline 

L2_SM_P product was originally restricted to input data from the 6:00 am descending 

passes because of the thermal equilibrium assumption and near-uniform thermal conditions 

of surface soil layers and overlying vegetation in the early morning hours.  Accurate soil 

moisture retrievals using data from 6:00 pm ascending passes may require use of a land 

surface model and will be generated as part of the L4_SM product (see ATBD for L4_SM).  

However, some early results from the SMOS mission suggest that the additional error 

associated with 6 pm retrievals may not be as large as expected [48].  As described in 

Section 8.1, the SMAP project starting with L2_SM_P Data Release Version 4 (Dec., 2016) 

produces a 6 pm retrieved soil moisture product using the same retrieval algorithm as the 

6 am soil moisture product and with only very slightly degraded accuracy [61, 63].  

 

3. PRODUCT OVERVIEW 

 

This ATBD covers the two coarse spatial resolution soil moisture products which are 

based on the SMAP radiometer brightness temperatures:  L2_SM_P, which is derived 

surface soil moisture in half-orbit format at 40 km resolution output on a fixed 36-km 

Equal-Area Scalable Earth-2 (EASE2) grid, and L3_SM_P, which is a daily global 

composite of the L2_SM_P surface soil moisture, also at 40 km resolution output on a fixed 

36-km EASE2 grid.  Utilizing one or more of the soil moisture retrieval algorithms to be 

discussed in section 4, SMAP brightness temperatures are converted into an estimate of the 

0-5 cm surface soil moisture in units of cm3/cm3.  

 

3.1 Inputs to Soil Moisture Retrieval 

The main input to the L2_SM_P processing algorithm is the SMAP L1C_TB product 

that contains the time-ordered, geolocated, calibrated L1B_TB brightness temperatures 

which have been resampled to the fixed 36-km EASE2 grid.  In addition to general 

geolocation and calibration, the L1B_TB data have also been corrected for atmospheric 

effects, Faraday rotation, and low-level RFI effects prior to regridding.  If the RFI 

encountered is too large to be corrected, the TB data are flagged accordingly and no soil 

moisture retrieval is attempted.  See the L1B_TB and L1C_TB ATBDs for additional 

details. 

In addition to TB observations, the L2_SM_P algorithm also requires ancillary datasets 

for the soil moisture retrieval.  These include: 

• Surface temperature 

• Vegetation opacity (or vegetation water content and vegetation opacity coefficient) 

• Vegetation single scattering albedo 

• Surface roughness information 

• Land cover type classification 

• Soil texture (sand, silt, and clay fraction) 

• Data flags for identification of land, water, precipitation, RFI, urban areas, 

mountainous terrain, permanent ice/snow, and dense vegetation 
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The specific parameters and sources of these and other externally provided ancillary 

data are listed in Section 6.   Other parameters used by the L2_SM_P algorithm are 

provided internally to the processing chain.  These include a freeze/thaw flag, an open 

water fraction, and a vegetation index; these were originally intended to be provided by the 

SMAP radar L2_SM_A product (see L2_SM_A ATBD) or other ancillary sources.  A 

radiometer-based freeze/thaw flag is now being generated by the L3_FT_P team. 

All input TB and ancillary datasets used in the retrievals are mapped to the 36-km 

EASE2 grid prior to entering the L2_SM_P processor.  All input data, retrieved soil 

moisture data, and flags utilize the same grid. 

    

Figure 8.  Conceptual list of input and output information for the L2_SM_P soil moisture product. 

3.2 Algorithm Outputs 

Figure 8 lists in a conceptual way the variety of input and output data associated with 

the SMAP L2_SM_P soil moisture product.  Many of these parameters will be discussed 

in Section 4 and Section 6.  The primary contents of the output L2_SM_P and L3_SM_P 

products are the retrieved soil moisture and associated quality control (QC) flags, as well 

as the values of the ancillary parameters needed to retrieve the output soil moisture for that 

grid cell.  The exact Data Product Description for the L2_SM_P and L3_SM_P products 

was generated in consultation with SMAP Science Data System (SDS) personnel, and  is  

available to the public through the NSIDC DAAC (see also Appendices 1 and 2).   



 25 

3.3 Product Granularity 

The L2_SM_P product is a half-orbit product.  SMAP ascending (6 pm) half-orbits are 

defined starting at the South Pole and ending at the North Pole, while descending (6 am) 

half-orbits start at the North Pole and end at the South Pole.  Input TB observations from a 

given half-orbit are processed to generate output soil moisture retrievals for the same half 

orbit.   

The L3_SM_P product is a daily product generated by compositing one day's worth of 

L2_SM_P half-orbit granules, separately for ascending and descending half-orbits, onto a 

global array.  TB observations from descending (6 am) passes are used to retrieve soil 

moisture for the L2_SM_P and L3_SM_P standard products as mentioned in Section 2.4.  

Starting with L2_SM_P Data Release Version 4 in December, 2016, 6 pm soil moistures 

are produced by applying the baseline 6 am retrieval algorithm to TB data from the 6 pm 

ascending passes.  The 6 pm soil moisture data will be done on a best effort basis and will 

not be included in assessments of whether the L2_SM_P product meets the mission Level 

1 requirements.  However, the 6 pm retrievals will also be compared against observations 

of soil moisture to assess their accuracy.  Currently, the data volume estimate for the 

L2_SM_P product is 15 MB/day and the data volume estimate for the L3_SM_P product 

is 41 MB/day; these values are based on products from the 6 am descending pass only. 

3.4 SMAP Product Suite 

The L2_SM_P and L3_SM_P products are part of the suite of SMAP products shown 

previously in Table 2.  The SMAP L1-L3 products will be generated by the SMAP Science 

Data Processing System (SDS) at JPL, while the SMAP L4 products will be produced by 

the Global Modeling and Assimilation Office (GMAO) at NASA GSFC.  All SMAP data 

products approved for release will be archived and made available to the public through a 

NASA-designated Earth Science Data Center.  NASA HQ has designated that the National 

Snow and Ice Data Center (NSIDC) in Boulder, CO will be the primary SMAP DAAC, 

although SMAP HiRes radar data will be archived separately at the Alaska Satellite Facility 

(ASF) in Fairbanks, AK.  

3.5 EASE Grid 

The grid selected for the SMAP geophysical (L2-L4) products is the updated Equal-

Area Scalable Earth-2 (EASE2) grid [26].  This grid was originally conceived at the NSIDC 

and has been used to archive several satellite instrument data sets including SMMR, SSM/I, 

and AMSR-E [27].  Using this same grid system for SMAP provides user convenience, 

facilitates continuity of historical data grid formats, and enables re-use of heritage gridding 

and extraction software tools developed for EASE grid. 

The EASE grid has a flexible formulation.  By adjusting one scaling parameter it is 

possible to generate a family of multi-resolution EASE grids that “nest” within one another.  

The nesting can be made “perfect” in that smaller grid cells can be tessellated to form larger 

grid cells, as shown in Figure. 9a.  This feature provides SMAP data products with a 

convenient common projection for both high-resolution radar observations and low-
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resolution radiometer observations.  Figure 9b illustrates the different resolutions for the 

3-, 9-, and 36-km EASE grids. 

 

A nominal EASE grid dimension of 36 km has been selected for the L2/3_SM_P 

products.  This is close to the 40-km resolution of the radiometer footprint and scales 

conveniently with the 3 km and 9 km grid dimensions that have been selected for the radar-

only (L2/3_SM_A) and combined radar/radiometer (L2/3_SM_A/P) soil moisture 

products, respectively.  A global 36-km EASE grid can be constructed having an integer 

number of rows and columns (408 and 963), with northernmost/southernmost latitudes of 

86.6225, using a scaling parameter1 that is almost exactly 36 km. 

 

 

 

 

Figure 9a.   Perfect nesting in EASE grid – smaller grid cells can be tessellated 

                    to form larger grid cells. 

 

 

Figure 9b.   Example of ancillary NDVI climatology data displayed on the SMAP 36-km, 

                     9-km, and 3-km EASE grids. 

 

                                                 
1 The precise value of the scaling parameter is 36.00040003 km at 30 latitudes. 

9 km 

36 km 

3 km 
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3.6 Soil Moisture Retrieval Process 

Figure 10 illustrates the conceptual process used in retrieving soil moisture from SMAP 

radiometer brightness temperature measurements.  In order for soil moisture to be retrieved 

accurately, a variety of global static and dynamic ancillary data are required (Section 6).  

Static ancillary data are data which do not change during the mission, while dynamic 

ancillary data require periodic updates in time frames ranging from seasonally to daily.  

Static data include parameters such as permanent masks (land/water/forest/urban/ 

mountain), the grid cell average elevation and slope derived from a DEM, permanent open 

water fraction, and soils information (primarily sand and clay fraction).  The dynamic 

ancillary data include land cover, surface roughness, precipitation, vegetation parameters, 

and effective soil temperatures.   Measurements from the SMAP radar were planned to be 

one source of information on open water fraction and frozen ground, in addition to water 

information from a MODIS-derived surface water data base and temperature 

information from the GMAO model used in L4_SM.  Ancillary data will also be 

employed to set flags which help to determine either specific aspects of the processing 

 

 

    Figure  10.   Conceptual flow of L2_SM_P process from input of TB to output of retrieved soil  

                        moisture. 
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(such as corrections for open water to be discussed in Section 4) or the quality of the 

retrievals (e.g. precipitation flag).  Basically, these flags would provide information as 

to whether the ground is frozen, snow-covered, or flooded, or whether it is expected to be 

actively precipitating at the time of the satellite overpass.  Other flags will indicate whether 

masks for steeply sloped topography, or for urban, heavily forested, or permanent snow/ice 

areas are in effect.  All input data to the L2_SM_P processor are pre-mapped to the 36-km 

EASE2 grid.   

Consistent with the SMAP Level 2 mission requirements [28], the L2_SM_P product 

is a half-orbit product  TB observations from a given half orbit go through the retrieval 

algorithm to produce retrieved soil moisture for the same half orbit.  An example of the 

L2_SM_P soil moisture from part of a single half orbit over the United States as simulated 

on the SMAP Algorithm Testbed (Section 5) is shown in Figure 11.  This example is based 

on a single-channel algorithm operating on H-polarized TB observations simulated using 

geophysical data from a land surface model. 

 
     Figure 11.  Example of SMAP retrieved soil moisture in cm3/cm3.  The half-orbit swath 

                        pattern is simulated using the orbital sampling module on the SMAP Algorithm 

                        Development Testbed. 

3.7 Level 3 Radiometer-Based Soil Moisture Product  (L3_SM_P) 

The L3_SM_P product is a daily global product.  To generate the product, individual 

L2_SM_P half-orbit granules acquired over one day are composited to produce a daily 

multi-orbit global map of retrieved soil moisture. 
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The L2_SM_P swaths overlap poleward of approximately 65 latitude.  Where 

overlap occurs, three options are considered for compositing multiple data points at a given 

grid cell: 

1. Use the most recent (or “last-in”) data point 

2. Take the average of all data points within the grid cell 

3. Choose the data point observed closest to 6:00 am local solar time 

The current approach for the L3_SM_P product is to use the nearest 6:00 am local solar 

time (LST) criterion to perform Level 3 compositing (a similar procedure is used for 6 pm 

starting in Data Release Version 4).  According to this criterion, for a given grid cell, an 

L2 data point acquired closest to 6:00 am local solar time will make its way to the final 

Level 3 granule; other 'late-coming' L2 data points falling into the same grid cell will be 

ignored.  For a given granule whose time stamp (yyyy-mm-ddThh:mm:ss) is expressed in 

UTC, only the hh:mm:ss part is converted into local solar time.  For example, 

 

UTC Time Stamp Longitude Local Solar Time 

2011-05-01T23:19:59 60E 23:19:59 + (60/15) hrs = 03:19:59 

The local solar time 03:19:59 is then compared with 06:00:00 in Level 3 processing for 

2011-05-01 to determine if the swath is acquired closest to 6:00 am local solar time.  If so, 

that data point (and only that data point) will go to the final Level 3 granule.  Under this 

convention, an L3 composite for 2011-05-01 has all Level 2 granules acquired within 24 

hours of 2011-05-01 UTC and Level 2 granules appearing at 2011-05-02 6:00 am local 

solar time at the equator.  Note that this is also the conventional way to produce Level 3 

products in similar missions and is convenient to users interested in global applications.  

Figure 12 shows an example of the L3_SM_P soil moisture output for one day’s worth of 

simulated SMAP descending orbits globally (Fig. 12a) and over just the continental U.S. 

(CONUS) (Fig. 12b).  

 

Fig. 12a. 
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Figure 12.   Simulation of L3_SM_P retrieved soil moisture in cm3/cm3.  This example   

                                   is based on the single channel algorithm operating on H-polarized TB  

                                   observations simulated using geophysical data from a land surface model. 

 

4.   RETRIEVAL ALGORITHMS 

Decades of research by the passive microwave soil moisture community has resulted 

in a number of viable soil moisture retrieval algorithms that can be used with SMAP TB 

data.  ESA’s SMOS mission currently flies an aperture synthesis L-band radiometer which 

produces TB data at multiple incidence angles over the same ground location.  The baseline 

SMOS retrieval algorithm is based on the tau-omega model described in Section 2.1 but 

utilizes the SMOS multiple incidence angle capability to retrieve soil moisture.  SMAP 

retrievals will also be based on the tau-omega model but will use the constant incidence 

angle TB data produced by the SMAP conically-scanning radiometer.  Other needed 

parameters in the retrieval will be obtained as ancillary data. 

SMAP baseline and optional algorithms will be evaluated for their soil moisture 

retrieval performance during the pre- and post-launch time frames.  The optional 

algorithms will be compared against the baseline algorithm using theoretical simulations 

and observational data.  Upon periodic assessment and review by the SMAP science team, 

a retrieval algorithm option with better performance than the baseline algorithm may 

replace the earlier baseline and become the new baseline. 

For the SMAP L2_SM_P product, five soil moisture retrieval algorithms are currently 

being evaluated: 

 Single Channel Algorithm at V polarization (baseline)  (SCA-V) 

 Single Channel Algorithm at H polarization  (SCA-H) 

 Dual-Channel Algorithm (DCA) 

 Microwave Polarization Ratio Algorithm  (MPRA) 

 Extended Dual Channel Algorithm  (E-DCA) 

Fig. 12b. 
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Evaluations are done using SMAP measurements and simulations, testing with 

observational data from the PALS airborne and ComRAD ground-based instruments 

(SMAP simulators), other field campaign data and in situ cal/val (CV) site data, as well as 

by applying candidate SMAP algorithms to SMOS and Aquarius satellite TB data.  The 

four algorithms (one baseline and three options) are described in this section.  Prior to 

implementing the actual soil moisture retrieval, a preliminary step in the processing is to 

perform a water body correction to the brightness temperature data for cases where a 

significant percentage of the grid cell contains open water. 

4.1   Water TB Correction 

 

At the 40-km footprint resolution scale of the SMAP radiometer, a significant 

percentage of footprints within the SMAP land mask will contain some amount of open 

fresh water due to the presence of lakes, rivers, wetlands, and transient flooding.  It is 

assumed that all ocean pixels will be masked out using the SMAP ocean/land mask.  For 

soil moisture retrieval purposes, the presence of open water within the radiometer footprint 

(IFOV) is undesirable since it dramatically lowers the brightness temperature and results 

in anomalously high retrieved soil moisture for that grid cell if soil moisture is retrieved 

without knowledge of the presence of open water.  This results in a bias which degrades 

the overall soil moisture retrieval accuracy.  It is therefore important to correct the SMAP 

Level 1 TB observations for the presence of water, to the extent feasible, prior to using them 

as inputs to the L2_SM_P soil moisture retrieval.  Fortunately, this bias can be corrected, 

especially when it occurs at dawn near inland water/land boundaries where the temperature 

of water can be reasonably approximated as the temperature of land (as shown in Figure 

6).    

 

Prior to implementing a soil moisture retrieval, a preliminary step in SMAP processing 

is to perform a water body correction to the brightness temperature data for cases where a 

significant percentage of the grid cell contains open water.  New to the End-of-Prime-

Mission release in June, 2018 for Version 2 of the L2_SM_P_E and Version 5 of the 

L2_SM_P soil moisture products, water correction is performed at the footprint level using 

the SMAP radiometer antenna gain pattern.  This correction procedure is performed in the 

Version 4 SMAP L1B Radiometer Half-Orbit Time-Ordered Brightness Temperatures 

(L1B_TB) product.  Both the horizontally and vertically polarized L1B brightness 

temperatures over land are corrected for the presence of water within the antenna field of 

view (FOV).  The resulting L1B brightness temperatures are then interpolated on the 9 km 

EASE Grid 2.0 projections using the Backus-Gilbert optimal interpolation method for the 

L1C_TB_E product and on the 36 km EASE Grid 2.0 projections using the inverse-

distance squared interpolation method for the L1C_TB product.  Note that both L1C 

products have water-corrected and uncorrected TB fields stored separately in their output 

fields.   

 

Over land, the resulting brightness temperatures become warmer upon the removal of 

the contribution of water to the original uncorrected observations.  As stated in the product 

page of the Version 4 SMAP L1B_TB product, water correction is performed as long as 
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the antenna-gain-weighted water fraction within the antenna FOV is less than or equal to 

0.9 and when the antenna boresight falls on a land location as indicated by a static high-

resolution land/water mask.  Further details of this procedure can be found in the User 

Guide, L1B_TB ATBD, or Assessment Report of the Version 4 SMAP L1B_TB product.  

The water-corrected brightness temperatures are further checked against valid data bounds 

(TBmax and TBmin) prior to being used in L2 soil moisture retrieval, where TBmax is set to 

be 340 K and TBmin is derived from the Klein-Swift water dielectric model, assuming zero 

salinity and water temperature predicted by the ancillary GMAO GEOS-5 surface 

temperature data. 

 

It is important to recognize that there is a threshold for the areal fraction of water within 

the antenna IFOV above which the correction may generate enough errors that the SMAP’s 

target retrieval accuracy of 0.04 cm3/cm3 may not be met.  Figure 12 shows how water 

fraction and land/water classification error affect the retrieval accuracy.  Given the 

uncertainties of TB observations as well as other model, ancillary, and environmental 

parameters, a relatively tight margin (0.005 cm3/cm3) of retrieval accuracy is plotted as a 

function of water fraction and classification error for three vegetation water contents 

(VWC) levels:  0.0, 2.5, and 5.0 kg/m2.  The figure shows that, for a given water fraction, 

water TB mixed with bare-soil TB is more easily correctable than with densely vegetated 

TB.  In the worst-case scenario (the green curve in Figure 13), a water fraction of 4% with 

a classification error no greater than 5% is needed to meet a retrieval accuracy of 0.005 

cm3/cm3 at VWC = 5 kg/m2. 

 

 

  Figure 13.  For a given soil moisture retrieval RMSE (0.005 cm3/cm3 in this case),  

                      more accurate estimation of the water fraction is needed for TB 

                      observations that contain a larger water fraction and/or a larger 

                      vegetation water content. 
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4.2   Single Channel Algorithm (Current Baseline) 

From a broad perspective, there are five steps involved in extracting soil moisture using 

passive microwave remote sensing.  These steps are normalizing brightness temperature to 

emissivity, removing the effects of vegetation, accounting for the effects of soil surface 

roughness, relating the emissivity measurement to soil dielectric properties, and finally 

relating the dielectric properties to soil moisture.  

In the single channel algorithm (SCA) [4], horizontally polarized TB are traditionally 

used due to their sensitivity to soil moisture, but the same algorithm can also be applied to 

V polarization TB.  The use of H pol TB with the SCA was the prelaunch SMAP baseline 

algorithm; SCA-V is the baseline for the postlaunch release of L2_SM_P data.  In the SCA 

approach, brightness temperatures are converted to emissivity using a surrogate for the 

physical temperature of the emitting layer.  The derived emissivity is corrected for 

vegetation and surface roughness to obtain the soil emissivity.  The Fresnel equation is then 

used to determine the dielectric constant.  Finally, a dielectric mixing model is used to 

obtain the soil moisture.  Additional details on these steps follow. 

At the L band frequency used by SMAP, the brightness temperature of the land surface 

is proportional to its emissivity (e) multiplied by its physical temperature (T).  It is typically 

assumed that the temperatures of the soil and the vegetation are the same at the SMAP 

overpass time of 6 am.  The microwave emissivity at the top of the soil surface or vegetation 

canopy is given by (the polarization subscript p is suppressed in the following equations):  

    
T

T
e B        (6) 

If the physical temperature is estimated independently, emissivity can be determined.  In 

the SMAP formulation, ancillary surface temperature in the form of a Numerical Weather 

Predication model product is utilized to estimate T (see SMAP Ancillary Data Report: 

Surface Temperature, JPL D-53064). 

The emissivity retrieved above is that of the soil as modified by any overlying 

vegetation and surface roughness.  In the presence of vegetation, the observed emissivity 

is a composite of the soil and vegetation.  To retrieve soil water content, it is necessary to 

isolate the soil surface emissivity (esurf).  Following Jackson and Schmugge [15], the 

emissivity  

                 surfsurf eee  ]11][1][1[    (7) 

Both the single scattering albedo (ω) and the one-way transmissivity of the canopy (γ) are 

dependent upon the vegetation structure, polarization and frequency.  The transmissivity 

is a function of the optical depth (τ) of the vegetation canopy: 

     ]secexp[          (8) 
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At L-band the single scattering albedo tends to be very small, and sometimes is assumed 

to be zero in order to reduce dimensionality for computational purposes.  For SMAP, the 

capability for a nonzero ω will be retained.  Substituting equation 8 into equation 7 and 

rearranging yields 

𝑒𝑠𝑢𝑟𝑓 =
𝑒−1+𝛾2+𝜔−𝜔𝛾2

𝛾2+𝜔𝛾−𝜔𝛾2
                    (9) 

The vegetation optical depth is also dependent upon the vegetation water content (VWC). 

In studies reported in [15], it was found that the following functional relationship between 

the optical depth and vegetation water content could be applied: 

          VWCb *        (10) 

where b is a proportionality value which depends on both the vegetation structure and the 

microwave frequency.  Since b is related to the structure of the overlying vegetation, it is 

likely that b will also vary with microwave polarization for at least certain types of 

vegetation.  The variation of the b parameter with polarization is currently being studied 

by the SMAP team – it is expected that analysis of SMOS data and other field data will 

resolve when a polarization dependence is evident and is therefore needed to improve soil 

moisture retrieval accuracy for that type of vegetation. 

For SMAP implementation of the SCA, values of h, b, and ω will be provided by means 

of a land cover look up table (an example is in Table 3 – note that the most current set of 

SMAP parameters used in routine processing will be available for download from NSIDC 

post-launch as the L2_SM_P team works to calibrate the model parameters throughout the 

intensive cal/val phase of the mission).  The vegetation water content can be estimated 

using several ancillary data sources (Section 6.3).  For SMAP, the baseline approach 

utilizes a set of land cover-based equations to estimate VWC from values of the 

Normalized Difference Vegetation Index (NDVI) (an index derived from visible-near 

infrared reflectance data from the EOS MODIS instruments now and the NPP/JPSS VIIRS 

instrument in the SMAP time frame) (see Equation 18).  The τ-ω parameters are derived 

from information in the refereed literature, from past experiences and analyses conducted 

by the SMAP team, and from informal discussions with subject matter experts [11, 12, 15, 

and others].  These values will be updated, and polarization-dependent values added, as 

new information becomes available. 

The emissivity that results from the vegetation correction is that of the soil surface, 

including any effects of surface roughness.  These effects must be removed in order to 

determine the smooth surface soil emissivity (esoil) which is required for the Fresnel 

equation inversion.  One approach to removing this effect is a model described in [16] that 

yields the bare smooth soil emissivity: 

    ]cosexp[]1[1 2hee surfsoil      (11) 
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The cos2θ term is sometimes changed to cos θ or dropped completely to avoid 

overcorrecting for roughness – the specific exponent to use will be determined during the 

SMAP CV phase. SMAP currently uses cos2θ.  The parameter h is dependent on the 

polarization, frequency, and geometric properties of the soil surface and is related to the 

surface height standard deviation s.  h values for different land cover types will be included 

in the SMAP τ-ω parameter look up table.  

Emissivity is related to the dielectric properties (ε) of the soil and the viewing or 

incidence angle (θ).  For ease of computational inversion, it can be assumed that the real 

component (εr) of the dielectric constant provides a good approximation of the complex 

dielectric constant; however, the complex form is also retained in the SMAP L2_SM_P 

processor.  The Fresnel equations link the dielectric constant to emissivity.  For horizontal 

(H) polarization (eq. 2 rewritten for emissivity):  
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and for vertical (V) polarization the relationship is (eq. 3 rewritten for emissivity): 
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The dielectric constant of soil is a composite of the values of its components – air, soil, 

and water – which have greatly different values.  A dielectric mixing model is used to relate 

the estimated dielectric constant to the amount of soil moisture.  As described in Section 

2.2, there are three dielectric mixing models under consideration that seem to perform 

differently in different soil moisture ranges (Wang and Schmugge [21], Dobson et al. [20], 

and Mironov [19]).  The SMOS team is evaluating the relative merits of these dielectric 

models and their impact on overall soil moisture retrieval accuracy, and is currently using 

mainly the Mironov model.  The SMAP project plans to closely monitor and review the 

SMOS results in making the selection of a dielectric model for SMAP.  The SMAP 

processor has options for all three of the dielectric models, with the Mironov model also 

the current SMAP baseline.   
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ID MODIS IGBP land classification s h b 
Stem 
factor 

0 Water Bodies -- 0 0 0 -- 

1 Evergreen Needleleaf Forests 1.60 0.160 0.100 0.050 15.96 

2 Evergreen Broadleaf Forests 1.60 0.160 0.100 0.050 19.15 

3 Deciduous Needleleaf Forests 1.60 0.160 0.120 0.050 7.98 

4 Deciduous Broadleaf Forests 1.60 0.160 0.120 0.050 12.77 

5 Mixed Forests 1.60 0.160 0.110 0.050 12.77 

6 Closed Shrublands 1.00 0.110 0.110 0.050 3.00 

7 Open Shrublands 1.10 0.110 0.110 0.050 1.50 

8 Woody Savannas 1.00 0.125 0.110 0.050 4.00 

9 Savannas 1.00 0.156 0.110 0.080 3.00 

10 Grasslands 1.56 0.156 0.130 0.050 1.50 

11 Permanent Wetlands 1.00 0 0 0 4.00 

12 Croplands - Average 1.08 0.108 0.110 0.050 3.50 

  - Wheat 0.83 0.083 TBD TBD TBD 

  - Mixed (Wheat, Barley, Oats) 1.08 0.108 TBD TBD TBD 

  - Corn 0.94 0.094 TBD TBD TBD 

  - Soybean 1.48 0.148 TBD TBD TBD 

13 Urban and Built-up Lands -- 0 0.100 0.030 6.49 

14 Crop-land/Natural Vegetation Mosaics 1.30 0.130 0.110 0.065 3.25 

15 Snow and Ice -- 0 0 0 0 

16 Barren 1.50 0.150 0 0 0 

An example of retrieved soil moisture using the SCA and site-specific correction 

parameters is shown in Figure 14: 

 

Figure 14.   Soil moisture retrieval error based on L-band H-polarized TB airborne observations.  

                    The vegetation parameter b and roughness parameter h are optimized using ground  

                    measurements of soil moisture from the SMEX03 and SMEX04 field campaigns 

                    [[30];  also D. Ryu, personal communication].  The canopy and soil temperatures are 

                    assumed to be equal (i.e., Tc = Ts = Teff) under the hydraulic equilibrium assumption.  
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Table 3.  Example of Look Up Table of Algorithm Parameters by IGBP Class 

                 (note:  not the SMAP final set)  

All 

Observed Soil Moisture  (cm3/cm3) 

RMSE 

(cm3/cm3) 
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4.2.1   Nonlinear VWC Correction 

In terms of soil moisture retrieval performance, the Hydros OSSE [7] revealed that the 

SCA could produce biased retrievals based on linear VWC correction aggregated from 

high-resolution vegetation data.  However, two relatively simple approaches were 

developed to create an effective VWC that helps to reduce the bias and overall RMSE in 

retrieved soil moisture [31, 32].  For example, from [32], the observed TB
obs integrated over 

the IFOV can be written as (assuming uniform soil moisture, soil temperature, surface 

roughness, and antenna gain): 

 

 

While these methods have been successfully applied to the SCA (Figure 15), their value 

to the other candidate soil moisture retrieval algorithms (DCA and MPRA) is currently 

being investigated.  

 

Figure 15.   Improvement in simulated Hydros soil moisture retrieval error using a simple 

                    effective VWC correction with the SCA algorithm for existing vegetation (1X) 

                    and for artificially increased simulated vegetation amounts (3X) [31]. 

(nonlinear VWC correction) 

(14) 
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4.3   Dual Channel Algorithm 

The Dual Channel Algorithm (DCA or DPOL) is an extension of the SCA described in 

the previous section  it uses both H-polarized and V-polarized TB observations to 

simultaneously retrieve soil moisture and VWC  [33].  The inversion mechanism of the 

DCA starts with feeding the tau-omega model (Section 2.1, equation 1) with initial guesses 

of soil moisture and VWC.  The quantities are then adjusted iteratively until the difference 

between the computed and observed TB observations is minimized in a least square sense.  

Similar to the SCA, estimates of model parameters (e.g., surface temperature, surface 

roughness, and vegetation single scattering albedo) must be provided using ancillary 

datasets in the inversion process. 

The DCA has been used with reasonable success in the 2007 CLASIC field campaign 

conducted in Oklahoma, USA [34].  Figure 16 shows the variability of the retrieved soil 

moisture and vegetation opacity. 

 

    Figure 16.   Simultaneous retrieval of soil moisture and VWC using the DCA with airborne 

                        PALS data from the 2007 CLASIC field campaign.   The spatial and temporal  

                        variability of the two parameters retrieved by the DCA agree with the actual  

                        wetting-drying pattern observed during the campaign. 
 

The ability of the DCA to simultaneously estimate two geophysical parameters may 

come with a penalty.   While the additional channel allows for estimation of VWC, it also 

brings in additional TB errors (uncorrelated between V and H channels) that may adversely 

affect retrieval accuracy.  Also, an assumption implicit in this algorithm is that the optical 

depth is identical for both polarizations.  Exactly which effect outweighs the other is under 

investigation through simulations using the SMAP SDS Testbed (to be described in Section 

5). 
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4.4   Land Parameter Retrieval Model 

The Microwave Polarization Ratio Algorithm (MPRA), based on the Land Parameter 

Retrieval Model [35], is an index-based retrieval model that uses dual polarization channels 

at a single microwave frequency (typically C or X-band) to derive soil moisture and 

vegetation optical depth.  As implemented on multi-frequency satellites such as AMSR-E, 

it also uses the Ka-band V-polarized channel to retrieve physical temperature of the 

surface.  Only a few studies [36] have examined the applicability of this model at L-band 

frequencies, although analysis of SMOS data with LPRM is currently underway [R. de Jeu, 

personal communication, 2011].  Because there are no Ka-band V-polarized TB 

observations available from the SMAP instruments, surface temperature will be obtained 

using ancillary data sets as with the other L2_SM_P algorithms. 

In the MPRA, the radiative transfer model operates on two assumptions:  (1) the soil 

and canopy temperatures are considered equal (T), and (2) the vegetation transmissivity (γ) 

and the single-scattering albedo (ω) are the same for both H and V polarizations.  If es is 

the soil emissivity, the TB can be expressed by the tau-omega model (Eq. 1) with TC = TS 

= T : 

 

𝑇𝐵 = 𝑒𝑠𝛾𝑇 + (1 − 𝜔)(1 − 𝛾)𝑇 + 𝛾(1 − 𝑒𝑠)(1 − 𝜔)(1 − 𝛾)𝑇       (15) 

The single scattering albedo ω represents the loss of energy in the canopy and is assumed 

by MPRA to be constant globally, in contrast to the other L2_SM_P algorithms where a 

nonzero ω is assumed to be a function of land cover type and is input as an ancillary 

parameter (from look up table).  In a previous study [36] using L-band TB from an aircraft 

experiment in Australia, the global ω was set equal to 0;  however, for the ongoing SMOS 

analyses, ω = 0.05 is being used as the global value [R. de Jeu, personal communications, 

2011]. 

The Microwave Polarization Difference Index (MPDI) and the observed emissivity (eH 

and eV) are used in MPRA to derive the vegetation optical depth [38], which in turn is used 

to calculate the transmissivity (γ).  The MPDI and vegetation optical depth are calculated 

as follows: 

𝑀𝑃𝐷𝐼 =
𝑇𝐵𝑉−𝑇𝐵𝐻

𝑇𝐵𝑉+𝑇𝐵𝐻
       (16) 

𝜏 = cos(𝜃) 𝑙𝑛 [𝑎𝑑 + √(𝑎𝑑)2 + 𝑎 + 1]      (17) 

where a and d are a = 0.5 [(eV - eH) / MPDI - eV - eH] and d = 0.5 ω / (1 - ω). 

The observed emissivity can also be modeled as a function of soil moisture and 

temperature in three steps.  First, the dielectric constant is calculated as a function of soil 

moisture, temperature, and soil type following the parameterization of Wang and 

Schmugge [21].  Second, the smooth surface emissivity is calculated by applying the 

Fresnel equations.  Third, this emissivity is corrected for roughness effects according to 
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Choudhury et al. [16].  The roughness parameterization requires an estimate of the 

parameter h, which is dependent on the polarization, frequency and geometric properties 

of the soil surface.  In previous applications of this approach using C- and X- band, it was 

found acceptable to set this roughness parameter to a constant;  with SMAP, a land cover-

based roughness will likely be used for consistency with the other algorithms.  With this 

set of equations, soil moisture is retrieved in an optimization routine that minimizes the 

error between the modeled and observed H-polarized brightness temperatures.  The 

vegetation optical depth at this optimized soil moisture value is an additional retrieval 

result. 

 

4.5   Extended Dual Channel Algorithm (E-DCA)  

The E-DCA is a variant of DCA.  Like DCA, E-DCA uses both the vertically and 

horizontally polarized TB observations to solve for soil moisture and vegetation optical 

depth.  In E-DCA, however, the cost function (Φ2) is formulated in a way different from 

that of DCA.  Instead of minimizing the sum of squares of the differences between the 

observed and estimated TBs as in DCA (Equation 1 above), the E-DCA attempts to 

minimize the sum of squares of the difference between the observed and estimated 

normalized polarization differences (expressed in natural logarithm) and the difference 

between the observed and estimated TBs (also expressed in natural logarithm) as follows: 

 

min ΦE−DCA
2 = [log (

TB,v
obs − TB,h

obs

TB,v
obs + TB,h

obs
) − log (

TB,v
est − TB,h

est

TB,v
est + TB,h

est)]

2

+ [log(TB,h
obs) − log(TB,h

est)]
2
 

(18) 

 

In each iteration step, soil moisture and vegetation opacity are adjusted simultaneously 

until the cost function attains a minimum in a least square sense.  It is clear that when both 

ΦDCA
2   and ΦE−DCA

2  attain their theoretical minimum value (i.e. zero) in the absence of 

uncertainties of modeling, observations, and ancillary data, TB,v
obs = TB,v

est and TB,h
obs = TB,h

est, 

implying that DCA and E-DCA converge to the same solutions.  The advantage of E-DCA 

over DCA, however, is apparent when in reality there is finite uncertainty (e.g., a dry bias 

associated with the ancillary soil temperature data) -- this uncertainty will be cancelled 

from the numerator and denominator in the calculation of the normalized polarization 

difference in ΦE−DCA
2 , leaving such uncertainty affecting only one component of the cost 

function instead of two components as in ΦDCA
2 .  This reduction in the impact of soil 

temperature uncertainty on soil moisture retrieval should make E-DCA more tolerant of 

soil temperature uncertainty, resulting in fewer instances of retrieval failure than DCA.  At 

present, there are a few caveats associated with E-DCA:  (1) its exact performance is being 

evaluated in the ongoing Cal/Val activities and is not included in the assessment reports to 

date, and (2) the choice of the horizontally polarized TB in the ΦE−DCA
2  formulation is 

subject to further assessment as analyses of new observations and Cal/Val data become 

available. 
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4.6   Algorithm Error Performance 

 

One measure of algorithm performance is determining the accuracy of the retrieved soil 

moisture in a root square sense.  Different algorithms respond differently to uncertainty in 

a given model / ancillary parameter.  One initial pre-launch test performed by the SMAP 

team involved retrieving soil moisture from one year of global simulated SMAP brightness 

temperatures, varying one parameter in turn while keeping the other parameters constant 

with no error (the SMAP Algorithm Testbed will be described in Section 5).  Table 4 lists 

the error in retrieved volumetric soil moisture (in cm3/cm3) for each of the four SMAP 

L2_SM_P candidate algorithms over the full range of soil and vegetation water content 

(VWC) conditions encountered in the global simulation.  The first column lists the 

parameter and its assigned error.  Across this full range of conditions, with error only in 

one parameter at a time, all of the algorithms appear to perform to acceptable levels in 

retrieving soil moisture. 

 

A more stringent simulation is to assign some error to all parameters simultaneously 

and then assess the accuracy in retrieved soil moisture.  Figure 17 shows the results 

obtained when the indicated errors were applied to the indicated parameters and soil 

moisture was retrieved for one year and compared to the “true” soil moisture.  All 

algorithms meet the SMAP mission requirements of retrieving soil moisture to an accuracy 

of 0.04 cm3/cm3 for areas within the SMAP mask where VWC is ≤ 5 kg/m2 when averaged 

across all VWC bins.  For this simulation, parameters such as b and h were assumed to be 

the same for both H and V polarization.  This assumption will be re-examined as new 

information is obtained (through analysis of SMAP, SMOS and other field data) regarding 

quantification of any polarization dependence of any of the algorithm parameters. 

 

Additional studies using a new more realistic global simulation (GloSim3) confirmed 

the initial results of algorithm performance.  Although the baseline SCA algorithm 

performed somewhat better in these simulations, all four algorithms have been coded in 

the L2_SM_P processor and will be analyzed during the official SMAP CV period.  The 

algorithm which produces the best overall soil moisture retrievals will then be used in 

subsequent SMAP bulk reprocessings. 

4.7   Algorithm Downselection 

Downselection of the baseline SMAP algorithm for the L2_SM_P product will be 

based on a combination of demonstrated higher accuracy in retrieved soil moisture, lower 

bias, better overall performance across land cover classes globally, and operational 

considerations.  Performance results were assessed pre-launch using: (1) simulated data 

from GloSim3, (2) analyses of past and new field campaign data, especially SMAPVEX-

12 and ComRAD (APEX12), and (3) application of SMAP algorithms to SMOS TB data 

at the SMAP incidence angle of 40°.  Post-launch, performance assessments were made 

based on comparisons to in situ CV site data and other CV approaches (section 7) during 

the official SMAP calibration / validation period.  However, algorithm performance will 

continually be assessed throughout the SMAP mission, and one of the other algorithms 

could be substituted for the baseline algorithm should a problem be detected later.  This 
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approach insures that the best possible algorithm will be used in order to deliver the best 

possible product to the public and NASA archives.  The SCA-V is the current baseline 

algorithm for the L2/L3_SM_P and L2/L3_SM_P_E products. 
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Table 4.  Simulated Retrieval Error by Parameter for each Algorithm 

 
 

 

 

 

 

 Figure 17.    Simulated error performance of all L2_SM_P candidate retrieval algorithms.  

                      One year of simulated global SMAP main-beam H- and V-polarized L1C_TB   

                      (GloSim3) were used to retrieve soil moisture using perturbed model and ancillary  

                      parameters.  Static water TB correction was applied after TB gridding. 

 Based on GloSim. 

 

 

 

 
10% 

L2_SM_P Error Analysis 

 

RMSE averaged across all VWC bins

SCA-H SCA-V DCA MPRA

0.0213 0.0227 0.0323 0.0305
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4.7.1   Preliminary Results of Using SMOS Data to Simulate SMAP 

Microwave observations from the SMOS mission have been reprocessed to simulate 

SMAP observations prelaunch at a constant incidence angle of 40o (details of the SMOS 

reprocessing will be explained in Section 7.1.1).   This procedure provides a brightness 

temperature data set that closely matches the observations that will be provided by the 

SMAP radiometer.  SMOS brightness temperatures provide a global real-world, rather than 

simulated, input for evaluating the different SMAP radiometer-only soil moisture 

algorithm alternatives.  The use of real-world global observations will also help in the 

development and selection of different land surface parameters (roughness and vegetation) 

and ancillary observations needed for the L2_SM_P soil moisture algorithms.   The 

ancillary data sets required are dependent on the choice of the soil moisture algorithm.  For 

example, for its needed vegetation information, the single channel algorithm (SCA) might 

use (a) SMOS-estimated vegetation optical depth, (b) MODIS-based vegetation 

climatology data, or (c) actual MODIS observations. 

Initial results using the SCA-H with a SMOS-based simulated SMAP TB data set and 

MODIS-based vegetation (NDVI) climatology data are presented here.  For this 

preliminary analysis, the roughness parameter (h), vegetation parameter (b), and the single 

scattering albedo (ω) were assumed constant for all land cover classes (h = 0.1, b = 0.08, 

ω = 0.05).  In subsequent analyses, these parameters will be further refined for different 

land cover classes as information becomes available and the τ-ω parameter look up table 

is updated.  ECMWF estimates of soil temperature for the top layer (as provided as part of 

SMOS ancillary data) were used to correct for surface temperature effects and to derive 

microwave emissivity.  ECMWF data were also used for precipitation forecasts and to note 

the presence of snow and frozen ground. 

Figure 18 shows the average soil moisture estimated using the SCA algorithm with the 

SMOS-simulated SMAP TB data for the ascending orbits (overpass time of 6 AM) for two 

time periods: (a) June 1-10 and (b) July 1-10, 2011.  A MODIS-based NDVI and supporting 

relationships between NDVI and optical depth were used to correct for vegetation effects.  

The soil moisture spatial patterns are consistent with geographical features.  The estimated 

soil moisture is very low for desert and arid regions (Africa, Middle East, Central Asia, 

and Central Australia).  High values of soil moisture were observed for forested areas in 

northern latitudes (Canada and Russia).  High soil moisture is also observed over portions 

of South America. 

In June 2011, the northern latitudes of Canada and Siberia had either snow on the 

ground or the top soil layer was frozen based on the ECMWF forecasts.  These areas were 

flagged during the soil moisture retrieval process.  The surface temperature increased in 

these areas above the freezing mark for the second test period in July 2011.  During July, 

a large part of South-East Asia, Northern South America and Central America is flagged 

because ECMWF forecasts indicated precipitation at the time of the SMOS overpasses.  

 

Soil moisture retrieved using the SCA-H with SMOS-simulated SMAP TB for January 

2010 – May 2013 was compared to data from in situ soil moisture networks in USDA ARS 

watersheds that have previously been extensively used in satellite-based soil moisture 
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validation (Jackson et al., 2010, 2011).  Figure 19 shows the comparison between observed 

and estimated soil moisture over the Little River (LR), Little Washita (LW), Walnut Gulch 

(WG), and Reynolds Creek (RC) watersheds for SMOS ascending orbits (overpass time of 

6 AM).  Table 5 shows the statistical performance of the SCA-H algorithm over these 

watersheds.  The overall range of soil moisture conditions for the period of record was 

fairly wide. The SCA retrievals over LR have a low bias and RMSE.  For LW, most of the 

error is because of a dry bias in the soil moisture estimates (-0.028 cm3/cm3).  The SCA-H 

soil moisture retrievals for the WG watershed have a good agreement with the in situ data 

with near zero bias.  In order to eliminate the effect of snow on SMOS/SMAP retrievals 

over the RC watershed, only data from July-September were used in the analysis.  The 

SCA results over RC have an underestimation bias that results in a high RMSE.  The 

correlation between the in situ observations and estimated soil moisture is good for all the 

watersheds.  As noted earlier, constant values of the roughness parameter, vegetation 

parameter, and single scattering albedo were used in this analysis, possibly contributing to 

the observed soil moisture bias. 

A second preliminary analysis regridded SMOS 40° TB data onto the SMAP 36-km 

EASE2 grid and used SMAP-gridded ancillary data with the SCA to retrieve soil moisture.  

These retrievals were also compared to in situ soil moisture data from the USDA 

watersheds without site-specific calibration for h, b, and ω (RMSE = 0.037 cm3/cm3, 

R=0.71) and with site-specific calibration (RMSE = 0.021 cm3/cm3, R=0.78).  These results 

are encouraging for the potential of SMAP to meet its required soil moisture accuracy for 

the L2_SM_P product.  

 

Figure 18a. Average estimated soil moisture using the single channel algorithm (SCA) for   

                           SMOS ascending orbits for the period of June 1-10, 2011. 
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Figure 18b. Average estimated soil moisture using the single channel algorithm (SCA) for   

                          SMOS ascending orbits for the period of July 1-10, 2011. 

 

Figure 19.  Comparison of estimated soil moisture using SMOS-simulated SMAP TB with  

                    in situ observations over USDA ARS watershed sites for ascending orbits (6 AM  

                    overpass time) for January 2010-May 2013.  One of the two outliers is due to the  

             likely presence of wet snow not predicted by ECMWF;  the other outlier is due to  

             an unpredicted active rain event.  
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Table 5.   Statistical summary of the SMOS/SMAP/SCA retrieval algorithm over the 

USDA watersheds for ascending orbits (6 am overpass time), January 2010 - May 2013. 

Watershed Count RMSE R Bias 

Little River, GA 247 0.028 0.767 -0.003 

Little Washita, OK 245 0.047 0.841 -0.028 

Walnut Gulch, AZ 231 0.025 0.789 -0.008 

Reynolds Creek, AZ 74 0.050 0.219 -0.045 

Overall 797 0.037 0.745 -0.016 

RMSE (Root Mean Square Error) and Bias are in cm3/cm3 (or m3/m3).  R = correlation coefficient,  N = 

number of samples.  Overall results are essentially the same when binned over 6-month summer and 

winter seasons  (summer RMSE = 0.038, winter RMSE = 0.034). 

 

5. SMAP ALGORITHM DEVELOPMENT TESTBED 

The SMAP project has developed and is currently using the Algorithm 

Development Testbed, a software infrastructure designed to simulate the passive and active 

microwave observations acquired by SMAP.  The Testbed attempts to address the 

following objectives: 

 

1. To obtain a more rigorous assessment of the soil moisture measurement capability 

for SMAP relative to that reported in the previous Hydros Risk Mitigation Study, 

2. To evaluate how the soil moisture and freeze/thaw measurement capability for 

SMAP is impacted by different science, instrument, and/or mission trades, 

3. To evaluate the relative merits of different microwave models, retrieval algorithms, 

and ancillary data for meeting the SMAP soil moisture and freeze/thaw science 

objectives, based on a common set of input and processing conditions,  and 

4. To provide an end-to-end system that can be used to test the integrated suite of 

SMAP science product algorithms as a prototype for the SMAP Science Data 

Processing System (SDPS). 

Of relevance to this ATBD, the Testbed can be used to evaluate the performance of 

different retrieval algorithms and to establish the corresponding error budgets based on a 

common set of geophysical and instrument conditions.  Within the Testbed environment, 

the following three approaches are adopted:  (1) numerical analyses based on land surface 

model (LSM) outputs, (2) numerical analyses based on Monte Carlo simulations, and (3) 

algorithm validation based on observations from field campaigns that feature L-band active 

and passive observations (e.g. SGP99, SMEX, CLASIC, and SMAPVEX).  These 

components and the interrelationships among them are summarized in Figure 20. 

 

With LSM outputs, the Testbed can generate simulated brightness temperature and 

radar backscatter observations according to SMAP’s orbital and instrument sampling 

pattern.  One full year of LSM outputs over global and the continental United States 

(CONUS) domains are available for simulations.  These simulations have been used for 

initial assessments of algorithm performance as described in the last section.   A global  
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       Figure 20.   The various simulation modules and input data sources for the 

                           SMAP Algorithm Development Testbed. 

 

map of retrieved soil moisture RMSE from one of these simulations is shown in Figure 21.  

As evident in the figure, retrieval error varies depending on the amount of vegetation, 

among other factors.  Antenna sidelobe contamination along coastlines and river/lake 

boundaries also leads to high retrieval errors.  Overall, the retrieved soil moisture RMSE 

stays below 0.04 cm3/cm3 over areas with low to moderate amounts of vegetation. 

 

 

Figure 21a.   Global soil moisture retrieval error based on simulations using LSM outputs and a 

                      L2_SM_P baseline algorithm. 
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Figure 21b.   Histogram of global soil moisture retrieval error based on simulation shown  

                       in (a).  Approximately 83% of the area in the SMAP land mask has a soil  

                       moisture retrieval error ≤ 0.04 cm3/cm3.   

 

New improved global simulations (GloSim2 and 3) are essentially complete.  They 

enhance the realism of SMAP forward simulations by adding: 

• Consistent global input forcings based on GMAO global nature run data, 

• Finer grid resolutions (9-km dynamic fields and 1-km static fields), 

• Finer temporal resolution (hourly), 

• Improved ancillary datasets (e.g., soil texture, VWC, water fraction, etc), 

• Enhanced radar forward modeling (more data cubes), 

• More realistic error modeling (consistent spatial scaling of random and non-random 

perturbations), and 

• Data format closer to the SMAP Data Product Specifications. 

 

6.    ANCILLARY DATA SETS  

6.1   Identification of Needed Parameters 

Ancillary data sets are defined as external data sets that are required as inputs to SMAP 

retrieval algorithms in the generation of the standard L2/3 products.  Ancillary data needed 

by the SMAP mission fall into two categories -- static ancillary data are data that do not 

change during the mission while dynamic ancillary data require periodic updates in time 

frames ranging from seasonally to daily.   Static data include parameters such as permanent 
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masks (land / water / forest / urban / mountain), the grid cell average elevation and slope 

derived from a DEM, permanent open water fraction, and soils information (primarily sand 

and clay fraction).  All of the static ancillary data are resampled to the same 3, 9, and 36-

km SMAP EASE grids as the output products and will be available to any algorithm or end 

user who needs them.  The dynamic ancillary data include land cover, surface roughness, 

precipitation, vegetation parameters, and effective soil temperatures.  Although most 

ancillary data are by definition external to SMAP, originally the SMAP radar was planned 

to provide key pieces of information to the L2_SM_P algorithms including the open water 

fraction and the frozen ground flag (see L2_SM_A, L3_FT_A, and L3_FT_P  ATBDs).  

While the exact types of ancillary datasets needed are specific to a given retrieval 

algorithm, all standard L2/3 products require some ancillary datasets to meet the specified 

retrieval accuracies. 

Table 6 lists the fourteen ancillary data parameters identified as required by one or 

more of the SMAP product algorithms along with the primary source of information for 

that parameter (in all cases, there are alternative options for these parameters from 

climatological data sets, forecast models, or data sets acquired in past or current missions).  

The choice of which ancillary data set to use for a particular SMAP product is based on a 

number of factors, including its availability and ease of use, its inherent error and resulting 

impact on the overall soil moisture or freeze/thaw retrieval accuracy, and its compatibility 

with similar choices made by the SMOS mission.  Latency, spatial resolution, temporal 

resolution, and global coverage are also important.  The choice of a primary source for 

each of the fourteen ancillary data parameters is fully documented in individual SMAP 

Ancillary Data Reports which are available to the user community  (these data reports are 

included in the list of SMAP Reference Documents at the front of this ATBD – see also 

http://smap.jpl.nasa.gov/science/dataproducts/ATBD/ ). 

6.2   Soil Temperature Uncertainty 

Errors in ancillary data are factored into the error budgets for each of the SMAP 

candidate soil moisture retrieval algorithms during SMAP simulations (Section 4.5).  A 

major issue prelaunch is to quantify the expected errors of these ancillary data parameters, 

especially the error in the effective soil temperature parameter, since it requires the most 

frequent (daily) updates and is used by all L2_SM_P algorithms.  The time resolution of 

the soil temperature (Tsoil) is also important – currently, the major global forecast centers 

(including NCEP, ECMWF, and GMAO) produce Tsoil forecast products at a time 

resolution relevant to SMAP (minimum time resolution of 3 hours).  For L2/3_SM_P 

processing, a local 6:00 am Tsoil will be generated by interpolating in time between the 

closest available 3-hourly Tsoil snapshots.  A preliminary assessment of the accuracy of 

ECMWF forecast temperatures was made for an area in the central U.S. encompassing the 

state of Oklahoma and compared against ground truth temperatures from the Oklahoma 

Mesonet for every day in 2003 (Figure 22), with an RMSE between forecast and measured 

surface temperatures of approximately 2.4°C [31].   

 

 

http://smap.jpl.nasa.gov/science/dataproducts/ATBD/
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1 Soil Temperature GSFC GMAO   [consistency ↔ L2-L4] 

2 Surface Air Temperature GSFC GMAO  

3 Vegetation Water Content  (VWC) MODIS NDVI [T. Jackson/R. Hunt approach] 

4 Soil Attributes (sand & clay fraction) 
Combination of HWSD (global), regional data sets 

(STATSGO-US, ASRIS-Australia, NSD-Canada), 

FAO 

5 Urban Area GRUMP data set – Columbia University 

6 Open Water Fraction 
a priori static water fraction from MODIS 

MOD44W to be used in conjunction with open 

water fraction from SMAP HiRes radar 

7 Crop Type 
combination of USDA Cropland Data Layer, 

AAFC-Canada, Ecoclimap-Europe  

8 Land Cover Class 
MODIS IGBP; crop class will be further 

subdivided into four general crop types 

9 Precipitation GSFC GMAO 

10 Snow Snow & Ice Mapping System (IMS) - NOAA 

11 Mountainous Area  [DEM] GMTED-2010 

12 Permanent Ice MODIS IGBP 

13 b, ω, and τ Vegetation Parameters land cover-driven table lookup   

14 h  Roughness Parameter land cover-driven table lookup   

 

 

 

 

Figure 22.   ECMWF forecast surface temperatures and Oklahoma MESONET (2 mm) 

                    surface temperatures at the overpass time of 06:00 AM local time for 2003 [31]. 

RMSE = 2.36 

N = 365 

Table 6.   Anticipated Primary Sources of Ancillary Parameters 
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More recently, T. Holmes et al. [39] compared the accuracy of 0-5 cm soil temperature 

derived from the three NWP centers (MERRA is a GMAO data set) against in situ soil 

temperature data from the Oklahoma Mesonet for years 2004 and 2009 [39].  Figure 23 

illustrates that at an overpass time of ~ 6 am, all synchronized NWP-derived surface 

temperature products have errors below 2 K, which is the amount of error budget allocation 

that is nominally carried for the surface temperature ancillary data parameter.  

  
 Figure 23.  Accuracy of NWP forecast surface soil temperature compared against  

                         in situ temperatures for the Oklahoma Mesonet for 2004 and 2009. 

 

 

6.2.1  Effective Soil Temperature 

Postlaunch, dynamic surface temperature forecast information is routinely ingested by 

SMAP from the GMAO GEOS-5 model and processed as an ancillary data input as part of 

the operational processing of the SMAP passive soil moisture product.  The original 

baseline computation of the effective surface temperature (Teff), which is a critical 

parameter in passive soil moisture retrieval, consisted of using the average of the GMAO 

surface temperature (TSURF) and the GMAO layer 1 soil temperature at 10 cm (TSOIL1).  

Preliminary analyses showed that a more sophisticated model for computing Teff was 

required due to non-uniform soil temperature profiles, especially in arid areas, which led 

to soil moisture retrieval issues.  In order to address this problem, several options for Teff 

were considered and evaluated using SMAP TB observations along with GMAO soil 

temperatures for the soil profile. 

New to the End-of-Prime-Mission data release is an improved depth correction scheme 

for the effective soil temperature.  At L-band frequency, the contributing soil depth of 

microwave emission may be different from the pre-defined discrete soil depths at which 

the soil temperatures are available from a land surface model.  The resulting discrepancy 

will lead to dry bias of retrieved soil moisture (i.e., retrieval lower than in situ soil moisture) 

SMAP 6 am descending orbit 



 53 

if the model-based effective soil temperature is colder than the soil temperature "seen" by 

the radiometer.  Conversely, wet bias of retrieved soil moisture will occur if the model-

based effective soil temperature is warmer than the soil temperature "seen" by the 

radiometer.  Since the contributing soil depth of microwave emission varies with soil 

moisture, the corresponding depth correction scheme for the effective soil temperature 

must account for soil moisture variability for brightness temperature observations acquired 

between AM (descending overpasses) and PM (ascending passes).  To achieve this 

objective, the following modified formulation of the Choudhury model [58] has been found 

to result in good agreement between the in situ soil moisture data and the retrieved 

L2_SM_P and L2_SM_P_E soil moisture: 

 

Teff = K × [ Tsoil2 + C (Tsoil1 - Tsoil2) ]  

 

where C = 0.246 for AM soil moisture retrieval and 1.000 for PM soil moisture retrieval, 

K = 1.000 for IGBP land cover classes 1 through 5 (dense vegetation classes) and K = 

1.020 elsewhere.  Tsoil1 refers to the average soil temperature for the first soil layer (0-10 

cm) and Tsoil2 refers to the average soil temperature for the second soil layer (10-20 cm) of 

the GMAO GEOS-5 land surface model. 
 

6.3   Vegetation Water Content 

 

As described in previous sections, a number of retrieval algorithms under investigation 

rely on vegetation water content (VWC) as an input ancillary parameter.  Accurate 

temporal estimates of VWC, especially at high spatial resolution on a global basis, are very 

important to achieving accurate soil moisture retrieval using SMAP algorithms.  Since 

VWC is not a parameter that can be measured directly by existing remote sensing 

techniques, it must be indirectly inferred from other measurable parameters with which it 

has high correlation.  One such parameter is the Normalized Difference Vegetation Index 

(NDVI). 

As described in the SMAP Ancillary Data Report for Global Vegetation Water Content 

[40], the SMAP team has been collaborating in the development of a more robust and 

reliable method for estimating VWC from NDVI, taking land cover variability into 

consideration.  This new approach leverages the existing NDVI-based methodology to 

estimate the foliage water content (leafy part of the vegetation canopy), while using a 

combination of past field observations and Leaf Area Index (LAI) modeled by NDVI to 

account for the stem water content (stem and branch part of the vegetation canopy).  The 

result is an estimate of VWC with water content contributions from the foliage and stem 

components, adjusted for the land cover types in the MODIS IGBP classification scheme. 

 

While the foliage component is expressed in terms of NDVI, the stem component is 

expressed in terms of Leaf Area Index (LAI), along with annual maximum and minimum 

NDVI.  As LAI exhibits distinct dynamics for different land cover types, this approach 

makes it possible to use NDVI and land cover classification data sets to construct a global 

VWC database at high spatial resolution.  For croplands and grasslands the current NDVI 
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is used for NDVIref; for all other vegetation types, the annual maximum NDVI is used for 

NDVIref: 

VWC = (1.9134 x NDVI2 - 0.3215 x NDVI) + StemFactor x (NDVIref - 0.1) / (1 - 0.1)          (19) 

where the stem factor is the product of the average height of a land cover class and the ratio 

of sapwood area to leaf area.  Sapwood area to leaf area ratio [55] is based on the physical 

requirements for water transport from the soil through the xylem and into the leaves in 

order to replace water lost by transpiration.  When the stem factor is multiplied by leaf area 

index (derived from canopy water content), the result is the approximate volume of water 

in the actively-conducting stem xylem per unit ground area   (see the last column of Table 

3).  An example of the VWC distribution using the above formulation over the US for July 

is shown in Figure 24. 

 

 

 Figure 24.    VWC over the continental U.S. for the month of July on a 1-km EASE grid as 

                     constructed from a 10-year MODIS NDVI climatology and land cover products. 

This new methodology for determining VWC was used in creating a new global 10-year 

MODIS NDVI climatology at 1 km spatial resolution for use by SMAP [41].  The new 

climatology was derived from MODIS data from 2000-2010, and is binned over 10-day 

periods throughout the year; prior to the SMAP launch, this climatology will be updated 

for the period 2000-2013.  In the absence of concurrent NDVI data during the SMAP 

mission, the historical NDVI for any day of the year for any location can be determined 

and then used in the VWC calculation described in Equation 17; the annual maximum 
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NDVI is also readily obtained.  Figure 25 illustrates the new NDVI climatology for the 

USDA watershed at Walnut Creek, IA (interpolated where snow is present).  Calculation 

of VWC also serves to set the dense vegetation flag, where the calculated VWC  > 5 

kg/m2 for the given grid cell. 

 

 

 

 

6.4   Soil Texture 

Soil moisture retrieval algorithms require information about soil texture, specifically 

sand and clay fraction.  A global dataset was assembled from an optimized combination of 

the FAO (Food & Agriculture Organization), HWSD (Harmonized World Soil Database), 

STATSGO (State Soil Geographic—US), NSDC (National Soil Database Canada), and 

ASRIS (Australian Soil Resources Information System) soil databases (Figure 26).  This 

composite dataset uses the best available source for a given region [54], which should 

improve the accuracy of SMAP products in that region as well as providing consistency 

with the work of local scientists and end users in that region.  A negative consequence of 

this decision is the potential for discontinuities at international boundaries, such as between 

the United States and Canada. 

snow 

Figure 25.   Annual climatology of NDVI for Walnut Creek, IA 

derived from 2000-2010 MODIS data. 

Walnut Creek, Iowa 
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6.5   Data Flags 

Ancillary data will sometimes also be employed to help to determine either specific 

aspects of the processing (such as corrections for transient water) or the quality of the 

retrievals (e.g. precipitation flag).  Basically, these flags will provide information as to 

whether the ground is frozen, snow-covered, or flooded, or whether it is actively 

precipitating at the time of the satellite overpass.  Other flags will indicate whether masks 

for steeply sloped topography, or for urban, heavily forested, or permanent snow/ice areas 

are in effect.  All flag threshold values are currently under review and may be modified 

during postlaunch calibration/validation activities.   

6.5.1   Open Water Flag 

The open water fraction will be produced by a prioi information on permanent open 

fresh water from the MOD44W database.  It is always reported as part of the L2_SM_P 

output product (see Appendix 1).  This information serves as a flag to affect soil moisture 

retrieval processing in the following way: 

 If water fraction is 0.00–0.05, then flag for recommended quality and retrieve soil 

moisture 

 If water fraction is 0.05–0.50, then flag for uncertain quality and attempt to 

retrieve soil moisture 

 If water fraction is 0.50–1.00, then flag but do not retrieve soil moisture 

6.5.2   RFI Flag 

The presence of radio frequency interference can markedly impact SMAP TB, and in 

turn can adversely affect soil moisture retrieval accuracy or prevent a retrieval from being 

attempted.  RFI is detected and corrected for in the L1B_TB (SPL1BTB) product, which 

Figure 26.  Global sand fraction at 0.01 degree resolution based on a composite of FAO,  

                   HWSD, STATSGO, NSDC, and ASRIS datasets using best available source 

                   for a given region.  All ancillary data will be resampled to the appropriate  

                   SMAP EASE grid. 
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sets an RFI flag which is eventually passed to the L2_SM_P processor (see L1B_TB 

ATBD).  The RFI flag affects soil moisture retrieval processing in the following way: 

 If RFI is not detected (bit 2=0 in SPL1BTB’s tb_qual_flag), then flag for 

recommended quality and retrieve soil moisture 

 If RFI is detected and can be corrected successfully (bit 3=0 in SPL1BTB’s 

tb_qual_flag), then flag for recommended quality and retrieve soil moisture 

 If RFI is detected but can only be corrected partially (bit 14=1 in SPL1BTB’s 

tb_qual_flag), then flag for uncertain quality and attempt to retrieve soil moisture 

 If RFI is detected and cannot be corrected (bit 3=1 in in SPL1BTB’s 

tb_qual_flag), then flag but do not retrieve soil moisture. 

Note that the RFI information is not embedded in SPL2SMP’s surface condition flag.  It is 

mentioned here because it, along with the status of other surface conditions, helps to 

determine the quality of soil moisture retrieval. 

6.5.3   Snow Flag 

Although the SMAP L band radiometer can theoretically see through dry snow with its 

low dielectric to the soil underneath a snowpack, the snow flag is currently envisioned as 

an area snow fraction based on the NOAA IMS database.  The snow flag affects soil 

moisture retrieval processing in the following way: 

 If snow fraction is 0.00–0.05, then flag for recommended quality and retrieve soil 

moisture 

 If snow fraction is 0.05–0.50, then flag for uncertain quality and attempt to 

retrieve soil moisture 

 If snow fraction is 0.50–1.00, then flag but do not retrieve soil moisture 

Permanent snow/ice fraction as indicated in the SMAP ancillary land cover map is also 

treated similarly to snow fraction with the same lower and upper permanent snow/ice 

thresholds. 

6.5.4   Frozen Soil Flag 

At the start of the SMAP mission, the intention was to set the SMAP frozen soil flag 

during internal SDS processing based on either the radar ground flag (see L3_FT_A 

ATBD) or on the GMAO-based Teff.  After the failure of the SMAP radar on July 7, 2015, 

a procedure was developed to replace the radar-based frozen soil flag with one generated 

from the SMAP radiometer data (see L3_FT_P ATBD).  For the End-of-Prime-Mission 

data release, however, the frozen soil area fraction is still based on temperature information 

from the GMAO GEOS-5 model.  Since the frozen soil flag is generated at high spatial 

resolution compared to the 36-km grid cell spacing of the L2_SM_P products, a frozen 

fraction is generated which affects soil moisture retrieval processing in the following way: 
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 If frozen soil fraction is 0.00–0.05, then flag for recommended quality and 

retrieve soil moisture 

 If frozen soil fraction is 0.05–0.50, then flag for uncertain quality and attempt to 

retrieve soil moisture 

 If frozen soil fraction is 0.50–1.00, then flag but do not retrieve soil moisture 

6.5.5   Precipitation Flag 

The SMAP precipitation flag is currently set based on forecasts of precipitation from 

the GEOS-5 model.  The use of observational data from the Global Precipitation Mission 

(GPM) will be evaluated as the mission progresses.  The precipitation flag gives the rain 

rate in mm/hr (or kg/m2/s), indicating the presence or absence of precipitation in the 36-

km grid cell at the time of the SMAP overpass.  The presence of liquid in precipitation 

incident on the ground at the time of the SMAP overpass can adversely bias the retrieved 

soil moisture due to its large impact on SMAP TB (precipitation in the atmosphere is part 

of the atmospheric correction done in SPL1BTB processing).  Unlike with other flags, soil 

moisture retrieval will always be attempted even if precipitation is flagged.  However, this 

flag serves as a warning to the user to view the retrieved soil moisture with some skepticism 

if precipitation is present. 

 If precipitation rate is 0.0–1.0 mm/hr, then flag for recommended quality and 

retrieve soil moisture 

 If precipitation rate is 1.0–25.4 mm/hr, then flag for uncertain quality and attempt 

to  retrieve soil moisture 

 If precipitation rate is > 25.4 mm/hr, then flag but do not retrieve soil moisture. 

6.5.6   Urban Area Flag 

Since the brightness temperature of manmade, impervious, and urban areas cannot be 

estimated theoretically, the presence of urban areas in the 36-km L2_SM_P grid cell cannot 

be corrected for during soil moisture retrieval.  Thus, the presence of even a small amount 

of urban area in the radiometer footprint is likely to adversely bias the retrieved soil 

moisture.  The SMAP urban flag will be set based on Columbia University’s GRUMP data 

set [42].   The urban fraction affects soil moisture retrieval processing in the following 

way: 

 If urban fraction is 0.00–0.25, then flag for recommended quality and retrieve soil 

moisture 

 If urban fraction is 0.25–1.00, then flag for uncertain quality and attempt to 

retrieve soil moisture 

6.5.7   Mountainous Area Flag 

Large and highly variable slopes present in the radiometer footprint will adversely 

affect the retrieved soil moisture.  The SMAP mountainous area flag will be derived from 

a statistical threshold based on the slope standard deviation (SD) within each 36-km grid 



 59 

cell.  Most likely, soil moisture retrieval will still be attempted in most areas flagged as 

mountainous. 

 If slope standard deviation is 0-3°, then flag for recommended quality and retrieve 

soil moisture 

 If slope standard deviation is 3-6°, then flag for uncertain quality and attempt to 

retrieve soil moisture 

 If slope standard deviation is > 6°, then flag but do not retrieve soil moisture 

6.5.8   Proximity to Water Body Flag 

For any given instantaneous measurement, the SMAP radiometer receives a portion of 

its energy from outside its 3 dB footprint.  This becomes an issue if a large water body is 

just outside the boundaries of a 36-km EASE Grid 2.0 cell but still contributes to the 

observed signal, since the microwave brightness temperature of standing water is 

significantly cooler than that of land and would adversely bias the soil moisture retrieved 

inside the 36-km cell.  The proximity to nearby water body flag affects soil moisture 

retrieval processing in the following way:  

 If distance to nearby water body > one 36-km grid cell, then flag for 

recommended quality and retrieve soil moisture 

 If distance to nearby water body < one 36-km grid cell, then flag for uncertain 

quality and attempt to retrieve soil moisture 

6.5.9   Dense Vegetation Flag 

The presence of dense vegetation in the grid cell negatively affects the accuracy of 

retrieved soil moisture.  However, at the request of the science community, a soil moisture 

retrieval will always be attempted regardless of the amount of vegetation present.  The 

dense vegetation flag affects soil moisture retrieval processing in the following way:  

 If vegetation water content is 0-5 kg/m2, then flag for recommended quality and 

retrieve soil moisture 

 If vegetation water content is 5-30 kg/m2, then flag for uncertain quality and 

attempt to retrieve soil moisture 

 If vegetation water content is > 30 kg/m2, then flag but do not retrieve soil 

moisture 

6.6   Latency 

The SMAP mission requirements impose latency requirements on all SMAP products.  

L2_SM_P data products have a latency requirement of 24 hours and the L3_SM_P products 

have a latency of 48-50 hours (to allow for the accumulation of 24 hours of half orbits and 

their subsequent processing).  In operational processing, the SDS is thus responsible for 

generating the L2_SM_P products within the stated periods from the moment of satellite 

data acquisition to delivery to the SMAP NSIDC DAAC for distribution to the public. 
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To meet these requirements, the external ancillary datasets that will be used in 

L2/3_SM_P processing must be available within the stated periods.  The major NWP 

forecast centers have indicated that most of the needed ancillary data parameters which are 

highly dynamic and time critical (e.g., surface temperature) will be available to the SMAP 

SDS for routine product generation within 6 hours of the forecast. 

7.    CALIBRATION AND VALIDATION 

7.1    Algorithm Selection 
 

As discussed in section 4.6, the selection of the algorithm to be used operationally to 

produce the standard SMAP L2_SM_P surface soil moisture product will be made just 

prior to the first SMAP bulk reprocessing and continually assessed throughout the mission.  

Performance evaluations pre- and postlaunch will include: 

• comparisons of soil moisture estimates using SMOS TB data processed to the SMAP 

configuration with in situ soil moisture data sets and SMOS algorithm retrievals, 

• comparisons of soil moisture estimates based on tower and aircraft field campaign data 

with ground-based observations,   

• sensitivity and uncertainty analyses based upon GloSim3 

• comparisons of SMAP retrievals with in situ data from CV sites.  

 

L2_SM_P products will satisfy the mission requirement that the retrieved soil moisture 

will have an ubRMSE (unbiased RMSE) of no more than 0.04 cm3/cm3 over areas 

where the vegetation water content ≤ 5 kg/m2;  this target accuracy was confirmed as 

achievable in a previous study (Figure 27) for the Hydros mission using three candidate 

algorithms [7].  The Hydros study showed that when retrievals were aggregated at the 

basin level (575,000 km2), all three algorithms met the target accuracy of 0.04 cm3/cm3 

volumetric soil moisture, although for individual pixels with high vegetation water 

content and/or high surface heterogeneity, the soil moisture retrieval accuracy degraded 

[note: the Hydros reflectivity ratio algorithm is not a candidate SMAP algorithm].  

These general results also apply to SMAP.  Accuracy assessments can be found for the 

SMAP L2_SM_P mission products in the assessment reports available from NSIDC 

[59-61, 63]. 
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     Figure 27.    Performance comparison among three candidate retrieval algorithms for  

                          the Hydros mission based on an OSSE over the Arkansas-Red River basin [7].   

 

7.1.1   SMOS and Aquarius Data Products 

The SMAP L2_SM_P team is in a unique position to assess the relative merits of 

alternative algorithms because data from two currently operating satellites, SMOS and 

Aquarius, can be used as surrogates for SMAP.  SMOS is currently providing L-band 

brightness temperature as well as a retrieved soil moisture product (since November 2009) 

[43]. Aquarius began providing brightness temperature data in August, 2011 (launched 

June 2011) [44] and has also released a soil moisture product [57].  The brightness 

temperatures from each of these missions require reprocessing in order to simulate the 

constant 40° incidence angle observations that SMAP will provide.  Unfortunately, the 

SAC-D/Aquarius mission failed in June, 2015, a few months after SMAP launched. 

Initially, the plan was to use the SMOS global gridded L1C browse brightness 

temperature product as a SMAP surrogate with minimal reprocessing. This SMOS product 

consists of swath-based dual/full polarization observations resampled to an Earth-fixed 

grid with a standard incidence angle of 42.5° at the nominal spatial resolution of SMAP.  

This product provides antenna reference brightness temperatures, but the required 

parameters for performing the rotation to true surface polarized TB (including Faraday 

angle) are not available in the browse product.  Upon further consideration of the 

differences (e.g., grid, incidence angle, etc.) between the two missions and an evaluation 

of the radiometric quality of the browse product, it was decided that it would be necessary 

to reprocess the SMOS data using the standard L1C product.  Only the unaliased FOV 

portions of the SMOS orbit are used in the processing.  The procedures adopted will result 

in a higher quality brightness temperature data set at a constant incidence angle of 40° 

matched to the SMAP grid.  Although this product will have a reduced swath width as a 

consequence of the reprocessing, the loss of some swath width is not critical to the 

algorithm performance assessment objectives of this analysis. 



 62 

The following files are acquired for each swath in order to conduct the subsequent 

analyses:  SMOS L2 soil moisture DAP (Data Analysis Product), SMOS L2 soil moisture 

UDP (User Analysis Product), ECMWF forecast files, and SMOS tau vegetation parameter 

files for forest and non-forest areas (τ).  The first stage of SMOS analysis is generating the 

constant 40 degree incidence angle brightness temperature data from the SMOS L1C TB 

product. This involves the following steps: 

• Removing the extended FOV portions of the SMOS orbit 

• Filtering to remove anomalous TB observations and RFI check 

• Interpolation to fill in full/dual-pol TB observations for each snapshot (needed for 

the next step) 

• Transforming from antenna to Earth reference frame (Computing X-Y to H-V TB) 

• RFI check  (0<TB<320, TBH<TBV) 

• For each grid point, brightness temperatures at all available incidence angles are 

used to develop a prediction equation for TB as a function of angle, and values at 

40 degrees are then predicted. 

The next stage of analysis is the retrieval of soil moisture with alternative SMAP 

algorithms using the SMOS products in their original grid system.  All ancillary data are 

derived from SMOS files.  These retrievals will be compared to the SMOS soil moisture 

products, ground-based soil moisture, and possible model-based products.  

Finally, the new 40° SMOS product will be transferred to the SMAP grid.  The 

alternative SMAP algorithms will then be applied with the SMAP ancillary data sets.  As 

described above, evaluation will utilize ground-based observations from well-studied 

validations sites, the SMOS soil moisture product (re-gridded), and model-based products.  

Ground-based data sets will include all site data provided by SMAP cal/val partners that 

meet the product scale and minimum requirements.  The validation site analysis will 

compute standard statistical parameters (RMSE, bias, correlation) for each algorithm at 

each validation site over at least one annual cycle.  Each site will be evaluated individually 

and then treated as a group to provide a ranking of the algorithms.   This process was 

evaluated in a rehearsal campaign. 

In addition to the analysis above that focuses on a number of well-characterized sites, 

evaluations that incorporate a global synoptic perspective will be conducted.  The entire 

global SMOS soil moisture data set will be compared to the products provided by the 

candidate SMAP soil moisture algorithms.  The performance of each algorithm, relative to 

SMOS, will be evaluated on an overall basis as well as for categories that include land 

cover types, NDVI levels, and continents.  Statistics will include RMSD, ubRMSD, bias, 

and correlation.  This analysis assumes that the SMOS soil moisture product is accurate 

and reliable.  While it is expected that the SMOS team is doing its best to achieve this goal, 

it is possible that there may be regions and land covers where the SMOS results are less 

reliable.  It is also possible that some data quality issues may remain, especially the issue 

of SMOS aliasing, which are likely to be more significant in the algorithms that utilize 
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more than a single polarization.  Methods to possibly mitigate this aliasing are currently 

being investigated. 

Aquarius brightness temperature and radar data became available beginning in August, 

2011.  Aquarius provided L-band data for three beam positions with incidence angles of 

28.7, 37.8, and 45.6 degrees.  Although methods for normalizing incidence angle will be 

explored, initially only the middle beam position data will be utilized.  The radiometric 

calibration and quality of the Aquarius data is high, based upon the necessity for high 

radiometric quality data in order to achieve the mission objectives of measuring sea surface 

salinity (which has a small dynamic range of TB).  Since its initial data release, there have 

been two reprocessings by Aquarius as well as SMOS changes that have resulted in 

Aquarius and SMOS brightness temperatures being closer to each other over the same 

target.  A drawback to the Aquarius data is its spatial resolution, which is several times 

coarser than SMAP.  This coarse resolution (>100 km) might reduce the range of estimated 

soil moisture and increase the impact of surface heterogeneity.  In addition, almost all of 

the global ground-based soil moisture validation sites have been developed to support 

products with a spatial resolution of 25-50 km.  The coarser scale of Aquarius relative to 

the ground-based data will have to be carefully considered in the algorithm assessments.  

The Aquarius program supports the generation of a soil moisture product [57].  Analyses 

indicate that the SMOS and Aquarius products are similar on a global basis. 

 

7.1.2   Tower and Aircraft Field Experiment Data Sets 

 

Because of the natural heterogeneity of landscapes and the inherent coarse scale of 

satellite radiometers, it can prove challenging to identify the causes of algorithm errors 

when using satellite-based sensors.  Tower and aircraft-based sensors have higher 

resolutions that allow the control of variability introduced by land cover and soils. 

Therefore, these instrument platforms can provide additional and valuable insights that are 

relevant to the algorithm selection decision [56]. 

Several recent field experiments have provided L-band dual polarization datasets that 

are used to evaluate algorithm performance under real-world conditions.  These datasets 

have been compiled and archived for SMAP investigations.  These datasets include aircraft 

observations of SMEX02, CLASIC, SMAPVEX08, CanEx-SM10, SMAPVEX12, 

SMAPVEX15-16, and tower-based observations from ComRAD and other instruments.  

When closely examined, these experiments only cover a limited set of conditions as a result 

of either design or meteorological circumstances.  Therefore, it would be highly desirable 

for the algorithm selection process to acquire additional data sets.  Tower (ComRAD 

APEX12) and aircraft (SMAPVEX12 SMAPVEX15-16) experiments were successfully 

conducted in the SMAP prelaunch and postlaunch time frames; data are currently being 

analyzed.   

In addition, several other field experiments outside of North America may prove 

valuable to the algorithm selection process.  The airborne soil moisture field campaigns are 

listed in Table 7. 
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Table 7.  Airborne Soil Moisture Field Campaigns 

Campaign Location Description 
Washita’92 Oklahoma The first campaign to attempt to collect a time series of spatially 

distributed hydrologic data, focusing on soil moisture and 

evaporative fluxes, using both conventional and remotely sensed 

methods. A NASA C-130 supported the ESTAR L band microwave 

radiometer and a DC-8 carried Airsar. One of the most successful 

and scientifically valuable campaigns ever conducted as a result of 

meteorological conditions and aircraft/instrument performance. 

Washita’94 Oklahoma The primary objective of this experiment was to provide combined 

ground and aircraft remotely sensed data sets in conjunction with 

the Space Shuttle Imaging radar missions (SIR-C) in 1994. Each 

SIR-C mission was to consist of one week of daily observations for 

the watershed site.  ESTAR and AirSAR collected data during 

portions of the campaign. 

SGP97 Oklahoma SGP97 was a broad multi-disciplinary experiment. One of its main 

objectives was to establish that the retrieval algorithms for surface 

soil moisture developed at higher spatial resolution using truck- and 

aircraft-based sensors can be extended to the coarser resolutions 

expected from satellite platforms. It included the L-band 

Electronically Scanned Thinned Array Radiometer (ESTAR) and a 

tower-based L and S-band system. The campaign spanned a longer 

time period (4 weeks) and covered a domain an order of magnitude 

larger than prior experiments. 

SGP99 Oklahoma SGP99 returned to the same study region as SGP97 with a new 

suite of aircraft-based sensors that included AMSR simulators and 

the recently developed L- and S-band PALS instrument. PALS was 

flown over the Little Washita Watershed on 5 days over a 6 day 

period. 

SMEX02 Iowa SMEX02 expanded previous aircraft-based experiments to higher 

biomass agricultural conditions (corn and soybeans). Both PALS  (7 

flights over two weeks) and AirSAR (5 flights over 9 days) data 

were collected. 

SMEX03 Georgia, 

Alabama, 

Oklahoma 

SMEX03 was designed in expand the diversity of land cover 

conditions that had been examined in previous campaigns.  The 

experiment included the first application of the L-band 2D-STAR 

instrument and Airsar coverage at one site (Oklahoma). 

SMEX04 Arizona, 

Mexico 

SMEX04 continued the expansion  of experimental sites conditions 

that had been examined in previous campaigns.  The experiment 

included the first application of the L-band 2D-STAR instrument 

and Airsar coverage at one site (Oklahoma). 

CLASIC07 Oklahoma CLASIC included the first flights with new antenna for PALS. 

Eleven flights were conducted over four weeks for two watersheds. 

SMAPVEX08 Maryland SMAPVEX08First field campaigns dedicated to resolving SMAP 

algorithm issues. Agricultural sites and PALS were the focus. In 

addition, the campaign addressed questions related to RFI.  

CanEx-SM10 Saskatoon, 

Canada 

CanEx-SM10 was a collaboration between NASA and CSA over 

agricultural and forest sites. NASA flew the airborne UAVSAR 

instrument in conjunction the Canadian L-band airborne radiometer 

and ground sampling observation over one of the SMAP Core 

Validation Sites.  
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SMAPEx10-

11 

New South 

Wales, 

Australia 

Collaboration led by the University of Melbourne and Monash 

University in Australia. Three week-long campaigns in 2010 and 

2011 designed to specifically address SMAP soil moisture 

algorithm issues. Two post-launch campaigns will be conducted in 

2015. The campaigns will include coincidental aircraft-based 

radiometer and radar measurements and ground observation over 

one of the SMAP Core Validation Sites  

San Joaquin 

Valley 

Experiment 

California SJV involves the UAVSAR instrument deployed t on several days 

in 2010-2011. Sites are irrigated orchards and vineyards. The 

primary objective of the experiment is to develop Vegetation Water 

Content (VWC) retrieval from optical remote sensing instruments, 

supported by optical instruments. Soil moisture and backscatter 

relationships will be evaluated. A series of ten flights over 5 months 

is planned. 

SMAPVEX12 Manitoba, 

Canada 

(MB) 

SMAPVEX12 was conducted in summer 2012 to address the 

remaining algorithm issues before the launch.  This experiment was 

a collaborative effort between NASA and CSA.  The primary L-

band observations were collected by the PALS instrument and 

UAVSAR.  A large spatial domain  (including agriculture and 

natural vegetation)  over a six-week period was measured. 

SMAPEx15 

SMAPVEX15

SMAPVEX16 

Australia 

Arizona 

IA, MB 

Post-launch validation of SMAP. 

 

 

7.1.3   Simulations Using the SMAP Algorithm Development Testbed 

 

As mentioned in sections 4.5 and 5, the SMAP Algorithm Development Team 

developed Fortran codes at JPL that enable a set of closed-loop, end-to-end global 

simulation runs known as GloSim [45].  These simulations will serve several purposes, 

including providing a mechanism for intercomparison of the relative merits of the four 

candidate L2_SM_P retrieval algorithms.  Additional simulations were run with GloSim 

to examine the performance of all candidate algorithms, and updated error budgets were 

generated for each algorithm; these products were incorporated into the 2014 rehearsal 

campaign. 

7.2   Validation 

 

Postlaunch validation must provide the information necessary to address whether or 

not SMAP has achieved its mission requirement to produce an estimate of soil moisture in 

the 0-5 cm layer with an average ubRMSE of no more than 0.04 cm3/cm3 over areas where 

the vegetation water content ≤5 kg/m2, excluding regions of frozen soil, permanent snow / 

ice, mountainous terrain, and open water at the footprint measurement scale  (40 km for 

the L2_SM_P).   It has been suggested by CEOS  (http://lpvs.gsfc.nasa.gov/)  that full 

validation of a satellite product can require a substantial effort in space and time data 

collection, and that a reasonable approach to the problem is to consider validation as 

consisting of several stages, which are summarized in Table 8. 

 

http://lpvs.gsfc.nasa.gov/
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Table 8.    A Hierarchical Approach to Classifying Land Product Validation Stages  

                    as Adopted by CEOS through Consensus of the Land Product Validation 

                    Community in 2003 and Revised in 2009 

Stage 1  
 Product accuracy is assessed from a small (typically < 30) set of locations and 

time periods by comparison with in situ or other suitable reference data. 

Stage 2  

 Product accuracy is estimated over a significant set of locations and time 

periods by comparison with reference in situ or other suitable reference data. 

 Spatial and temporal consistency of the product and with similar products has 

been evaluated over globally representative locations and time periods. 

 Results are published in the peer-reviewed literature.  

Stage 3 

 Uncertainties in the product and its associated structure are well quantified 

from comparison with reference in situ or other suitable reference data.  

 Uncertainties are characterized in a statistically robust way over multiple 

locations and time periods representing global conditions. 

 Spatial and temporal consistency of the product and with similar products has 

been evaluated over globally representative locations and periods. 

 Results are published in the peer-reviewed literature.  

Stage 4 
 Validation results for stage 3 are systematically updated when 

new product versions are released and as the time-series expands.  

 
 

Initial post-launch validation of the L2_SM_P product has been performed and is 

documented in the SMAP L2_SM_P beta, validated, and Version 4 release assessment 

reports [59, 60, 61] which are available through NSIDC; an L2_SM_P Data Release 

Version 5 assessment report [63] will be produced in June, 2018.  Validation Stages 1 and 

2 and beyond will be completed by the end of the official calibration/validation phase of 

the SMAP mission in 2016 (12 months after the beginning of routine science operations 

on orbit (IOC)).  All validation data and results will be provided through the NSIDC.  Given 

that an initial journal article presenting an assessment of the L2_SM_P soil moisture 

product was published in August, 2016 [62], it is realistic that within two years after the 

end of IOC, Stages 1 through 3 will be complete, and work toward Stage 4 will be well 

underway. 

The SMAP Cal/Val plan [46] describes five types of resources that will be utilized as 

sources of calibration/validation data.  These types of data are listed in Table 9, which 

describes their perceived role and issues that are currently being addressed by the SMAP 

team.  The NSPIRES DCL entry in the table refers to a Dear Colleague Letter request for 

information that was released by NASA to the science community to solicit members of 

the SMAP cal/val team and core validation and other validation sites globally.  A NASA 

panel in consultation with the SMAP team selected ~27 investigator sites or supported 

instrument networks in Summer, 2011.  Since then several new sites have been added.  The 

assessment reports list the latest core validation sites used in performance evaluations. 
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Table 9.   Overview of the SMAP Cal/Val Methodologies 

Methodology  Role Issues Actions 

Core Validation 

Sites 

 

Accurate estimates of 

products at matching 

scales for a limited set of 

conditions 

Calibration 

Up-scaling  

Limited number 

In Situ Testbed 

Scaling methods 

NSPIRES DCL 

Sparse 

Networks 

One point in the grid cell 

for a wide range of 

conditions 

Calibration 

Up-scaling 

Limited number 

In Situ Testbed 

Scaling methods 

NSPIRES DCL 

Satellite Products Estimates over a very wide 

range of conditions at 

matching scales 

Validation 

Comparability 

Continuity 

Validation 

Studies 

CDF Matching 

Model Products Estimates over a very wide 

range of conditions at 

matching scales 

Validation 

Comparability 

Validation 

Studies 

 

Field 

Experiments 

Detailed estimates for a 

very limited set of 

conditions 

Resources 

Schedule Conflicts 

Simulators 

Partnerships 

 

 

The baseline validation for the L2_SM_P soil moisture will be a comparison of 

retrievals at 36 km with ground-based observations that have been verified as providing a 

spatial average of soil moisture at the same scale, referred to as core validation sites (CVS) 

in the SMAP Calibration / Validation Plan.  This matches up closely with the Stage 1 

validation described in Table 8.  Data from core validation sites will be supplemented by 

field experiments.  In order to achieve Stage 2 validation and include a wider range of 

conditions as well as a synoptic/global assessment, some combination of data from sparse 

networks, other satellite products, and model-based estimates must be utilized.  Each of 

these data types has caveats associated with it that are described in Table 9.  The following 

sections provide some additional details on how each of the resources listed in Table 10 

will be utilized specifically for the L2_SM_P soil moisture product validation. 
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Table 10.    SMAP Cal/Val Methodologies and Their Roles in the 

                                       L2_SM_P Soil Moisture Product Validation 

Methodology  Data Required Importance Metrics  

Core Validation 

Sites 

 

Grid Cell averages for 

each overpass 

Primary  RMSE, 

ubRMSE, Bias, 

Correlation 

Sparse 

Networks 

Spatially scaled grid cell 

values for each overpass 

Secondary:  Pending 

results of scaling 

analyses 

RMSE, 

ubRMSE, Bias, 

Correlation 

Satellite Products Orbit-based match-ups 

Key targets 

 

Primary: Pending 

assessments and 

continued operation 

RMSD, 

ubRMSD, Bias, 

Correlation 

Model Products Orbit-based match-ups 

Key targets 

 

Secondary RMSD, 

ubRMSD, Bias, 

Correlation 

Field 

Experiments 

Detailed estimates for a 

very limited set of 

conditions 

Primary RMSE, 

ubRMSE, Bias, 

Correlation 

 

7.2.1   Core Validation Sites 

 

As noted previously, the baseline validation (Stage 1) for the L2_SM_P soil moisture will 

be a comparison of retrievals at 36 km with ground-based observations that have been 

verified as providing a spatial average of soil moisture at the same scale, referred to as 

core validation sites (CVS) in the SMAP Calibration / Validation Plan.  The CVS have 

been selected because they satisfied several criteria that included:  

 

• A network of sensors with adequate replication 

• For soil moisture, ideally, three nested levels of extent (3, 9, and 36 km) 

• For soil moisture, verified against gravimetric samples for the 0-5 cm layer 

• Minimal latency in providing data to the SMAP project  

• Fully operational well before launch, with infrastructure to support the site through 

at least 2016 (and hopefully beyond) 
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NASA has established agreements with the CVS teams that require the teams to provide 

the ground-based data in a timely manner to the SMAP project (or the NASA-designated 

SMAP DAAC at NSIDC).  There are expected to be ~15 of these CVS distributed over the 

globe, and these may increase in number over the next few years.  Many of these sites have 

been used in AMSR-E and SMOS validation [47-50].  Multiple sample points at each site 

will be averaged or upscaled to estimate the footprint-scale soil moisture value that will 

be compared to the SMAP retrieval.  The method of averaging will depend upon the 

amount of information provided by the CVS team. Some of these sites will also be the 

focus of intensive ground and aircraft field campaigns to further verify the accuracy of the 

collected data as well as improving scaling. 

Having a global distribution of sites will be beneficial to SMAP validation.  Based on 

the launch date of SMAP (January, 2015), the seasonal variations between the northern and 

southern hemispheres may impact the usefulness of some regions in validation within the 

initial 12-month cal/val period.  With a number of core sites in each hemisphere, this SMAP 

validation period is less affected by the seasonality of the launch date.  The SMAP project 

is implementing a special product for validation that consists of L1C_TB data centered 

over the core validation sites to aid in SMAP validation. This is particularly important to 

the L2_SM_P product because it will allow the full exploitation of the in situ data. 

 

7.2.2   Sparse Networks 

The intensive network validation described above can be complemented by sparse 

networks as well as by new/emerging types of networks.  Examples of sparse networks 

include the USDA Soil Climate Analysis Network (SCAN), the NOAA Climate Research 

Network (CRN), and the Oklahoma Mesonet.  The defining feature of these networks is 

that the measurement density is low, usually resulting in one point per footprint.  These 

observations cannot be used for validation without addressing two issues:  verifying that 

they provide a reliable estimate of the 0-5 cm surface soil moisture layer and that the one 

measurement point is representative of the footprint.  SMAP has been evaluating 

methodologies for upscaling data from these networks to SMAP footprint resolutions.  A 

key element of the upscaling approach will be a method called Triple Co-location (Section 

7.2.6) that combines the in situ data and SMAP product with another independent source 

of soil moisture, likely to be a model-based product. 

Beyond these operational networks, there are new technologies being evaluated 

(COSMOS, GPS) that could provide distributed soil moisture information.  SMAP is 

participating in the evaluation of these new technologies as part of its Marena, Oklahoma 

In Situ Sensor Testbed (MOISST) that is assessing both the verification of the relevant 

depth of measurement of these methods and scaling to SMAP footprints.  The upscaling of 

these sparse networks remains an issue at present, and until this issue is resolved, the sparse 

networks will likely remain a secondary validation resource for the SMAP L2_SM_P soil 

moisture products.   
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7.2.3   Satellite Products 

Depending upon mission timing and life, it is possible that SMOS, Aquarius, and 

JAXA’s GCOM-W will be producing global soil moisture products at the same time as 

SMAP.   SMOS and GCOM-W products are at the same nominal spatial resolution as the 

SMAP L2_SM_P soil moisture and are supported by validation programs, which should 

be mature by the time of the SMAP launch. As mentioned earlier, Aquarius soil moisture 

has a coarser resolution than these other satellites, but unfortunately failed in June, 2015. 

In a previous section, the use of SMOS data prior to the launch of SMAP was described.  

Postlaunch soil moisture product comparisons with SMOS and GCOM-W are a very 

efficient means of validation over a wide range of conditions.  If confidence in these 

products is high, they will provide an ideal resource for Stage 2 SMAP validation.  The 

limitations of this type of comparison are the quality of the alternative product, differences 

in overpass days, and accounting for system differences affecting the soil moisture product.  

In the case of GCOM-W, which collects data at 01:30 am and 01:30 pm, confusion factors 

would include both data acquisition at a different time of day from the SMOS/SMAP 

overpass time of 06:00 am and contributing depth issues associated with GCOM-W’s C-

band frequency.  The SMAP team will actively participate in the validation of these 

alternative products during the SMAP prelaunch period, which will provide us with 

knowledge of the quality of both the SMOS and GCOM-W soil moisture.  

Postlaunch validation will consist of comparisons between the SMAP / SMOS / 

GCOM-W / Aquarius soil moisture estimates that include: 

 Core validation sites (CVS) 

 Extended homogeneous regions 

 Global maps 

For the core validation sites and extended homogeneous regions, statistical comparisons 

will be conducted (Root Mean Square Difference, RMSD, will be used instead of RMSE 

because the alternative satellite products are not considered to be “ground truth”).  The 

CVS will likely consist of approximately 15 sites distributed around the globe as described 

in the SMAP Cal/Val Plan [46].  Comparisons will be initiated as soon as SMAP soil 

moisture products become available; however, a sufficient period of record that includes 

multiple seasons will be necessary before any firm conclusions can be reached.  It should 

also be noted that only dates when both satellites cover the same ground target at the same 

time will be useful.  The overlap of the swaths will vary by satellite.  The morning (and 

evening) orbits of SMAP and SMOS cross (the SMOS 6 am overpass is ascending while 

the SMAP 6 am overpass is descending).  Obviously, coverage of a specific site by both 

satellites will be infrequent.  Aquarius and SMAP have the same overpass times. 

Although data collected over the CVS will be of the greatest value, additional sites with 

concurrent satellite observations are also useful, especially for regions that are relatively 

homogeneous in terms of land cover/vegetation and soils.  One example would be the 

Sahara region. 
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Another role for the satellite products is in providing a synoptic perspective.  Global 

image comparisons will be used to identify regions and/or time periods where the soil 

moisture products from the different satellites diverge. 

Assessments will be conducted periodically throughout the SMAP postlaunch period 

to assess, monitor, and possibly correct bias offsets between SMAP products and 

SMOS/GCOM-W/Aquarius products.  In order to fully exploit SMOS/GCOM-

W/Aquarius soil moisture products for SMAP validation, it will be necessary for SMAP 

team members to participate in the assessment and validation of these products and to 

secure access to the data through ESA and JAXA. 

7.2.4   Model-Based Products 

In the simplest case, land surface models (either imbedded in a Numerical Weather 

Prediction (NWP) system or in off-line mode) can be used to generate soil moisture 

products at larger (basin-wide and continental) scales using land surface and 

meteorological forcing data sets that are independent of the SMAP remote sensing data.  

As in the case of satellite products, the resulting soil moisture fields can then be compared 

with the remotely sensed soil moisture product at validation sites (or synoptically) over 

diurnal and seasonal cycles.   These model-derived soil moisture fields can also be used to 

extend comparisons to larger space and time domains than available from in situ 

observations, thus supporting Stage 2 validation.  The L2_SM_P product matches the 

typical spatial resolution of currently available NWP products.  An advantage of the model-

based products is that they produce a synoptic global product every day, which means that 

more frequent comparisons to SMAP and ground-based observations are possible.  

Several Numerical Weather Prediction (NWP) centers (including ECMWF, NCEP, and 

NASA/GMAO) routinely produce operational or quasi-operational soil moisture fields at 

a scale comparable to the SMAP radiometer product that could be used in SMAP 

validation.  [This is distinct from the GMAO generation of the SMAP L4_SM surface and 

root zone soil moisture product which uses an ensemble Kalman filter (EnKF) to merge 

SMAP observations with soil moisture estimates from the NASA Catchment land surface 

model.]  The NWP-derived data products rely on the assimilation of a vast number of 

atmospheric observations (and select land surface observations) into General Circulation 

Models (GCMs).  Although there are many caveats that need to be considered in using 

these data, they are readily available and they are consistent with the atmospheric forcings 

(precipitation and radiation) and land use information that determine the spatial and 

temporal patterns in soil moisture fields.   

There is significant inherent uncertainty in any model-based soil moisture product since 

this is not one of the NWP primary variables.  In addition, the models typically simulate a 

thicker surface soil layer than the layer that dominates the satellite measurement.  Little 

effort has been put so far into validating the soil moisture products of these models.  

Therefore, while these model products are useful, they must be used very carefully.  As a 

result, they are considered to be a secondary resource for validating L2_SM_P soil 

moisture. 
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7.2.5   Field Experiments 

Post-launch field experiments will play an important role in a robust validation of the 

L2_SM_P data product.  These experiments provide critical information that can be used 

to independently assess the contributions of radiometer calibration, algorithm structure and 

parameterization, and scaling on performance.  Field experiments require numerous 

elements that include ground and aircraft resources, which involve many participants and 

associated financial support.  However, they provide moderate-term intensive 

measurements of soil moisture and other surface characteristics at SMAP footprint scales.  

While it is desirable to acquire such information as soon as possible after launch, the 

uncertainties of the actual launch date, the relationship of the launch date to the season, and 

the logistics of allocation of fiscal year resources require that such commitments be 

conservative.  Therefore, the field experiments should be scheduled for some time post-

launch and used as part of the more robust validation of the SMAP products.  Based on a 

January, 2015 launch, field campaigns are scheduled in 2015 in Australia and Arizona.  

Additionally, one major extended post-launch field campaign, which will include one or 

more core validation sites (such as Manitoba, Canada and the U.S. Midwest/Iowa), is 

scheduled for Summer 2016.  

7.2.6   Combining Techniques 

Recent work has extended the application of the “Triple Co-location” (TC) approach 

to soil moisture validation activities [51, 52].  These approaches are based on cross-

averaging three independently-acquired estimates of soil moisture to estimate the 

magnitude of random error in each product.  One viable product-triplet is the use of passive-

based remote sensing, active-based remote sensing and a model-based soil moisture 

product [51, 53].  If successfully applied, TC can correct model versus SMAP soil moisture 

comparisons for the impact of uncertainty in the model product.  However, TC cannot 

provide viable bias information and, therefore, only assesses the random error contribution 

to total RMSE.  Note that TC can also be applied to reduce the impact of sampling error 

when upscaling sparse in situ measurements during validation against ground-based soil 

moisture observations.  

 

8.   MODIFICATIONS TO ATBD 

 

This ATBD will continue to be modified under configuration control as new 

information becomes available and as the SMAP team refines its decisions regarding 

algorithm configuration, ancillary data selection, and the setting of flag thresholds. 

 

The following updates are relevant to L2_SM_P Data Release Version 4 and L2_SM_P_E 

Version 1 in December, 2016 [61]: 
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8.1   Soil Moisture Retrievals at 6 PM   

From the start of routine SMAP science operations on March 31, 2015, the soil 

moisture retrievals in the standard L2_SM_P product were generated using 6 am brightness 

temperatures as described in Section 2.4.  Starting with SMAP’s L2_SM_P Data Release 

Version 4 in December, 2016, 6 pm soil moistures were also produced by applying the 

baseline 6 am retrieval algorithm to TB data from the 6 pm ascending passes.  It was 

anticipated that the accuracy of the 6 pm soil moisture values would be somewhat worse 

than the 6 am soil moistures since some of the assumptions underlying the L2_SM_P 

retrieval algorithm at 6 am (low Faraday rotation, hydraulic and thermal equilibrium 

between the upper soil layers and the overlying air/vegetation layer, etc.) are more likely 

to be violated at 6 pm.  However, some early results from the SMOS mission suggested 

that the additional error associated with 6 pm retrievals may not be as large as expected 

[48], and in fact SMAP 6 pm soil moisture retrievals are only slightly worse than the 6 am 

retrievals [61, 63].  Although the 6 pm soil moisture retrieval performance will not be 

included in the evaluation of whether the L2_SM_P product meets the SMAP mission 

Level 1 requirements, the 6 pm retrievals have been compared against in situ observations 

of soil moisture to assess their accuracy as is done with the 6 am soil moisture values.  The 

latest comparisons for End-of-Prime-Mission will be reported in the Data Release Version 

5 assessment report available from NSIDC [63]. 

8.2   Soil Moisture Retrievals using the Enhanced L1C_TB_E Product    

        After the demise of the SMAP radar in July, 2015, the SMAP Project focused its 

attention on generating a new brightness temperature data set by using a Backus-Gilbert 

interpolation approach to take advantage of the SMAP radiometer oversampling on orbit.  

The resulting brightness temperatures are posted on a 9 km EASE2 grid.  Details of this 

new algorithm approach can be found in the SMAP Algorithm Theoretical Basis 

Document: Enhanced L1B_TB_E Radiometer Brightness Temperature Data Product, 

SMAP Project, JPL D-56287, Jet Propulsion Laboratory, Pasadena, CA.  The new 

L1B_TB_E brightness temperatures are used to produce a L1C_TB_E gridded product 

which is the starting point of the L2_SM_P_E soil moisture retrievals.  These retrievals use 

the same algorithm as the standard L2_SM_P soil moisture retrievals, but have an 

aggregation domain of 33 km compared to 36 km for the standard product, and are posted 

at 9 km.  The accuracy of the L2_SM_P_E soil moistures are compared to soil moisture 

observations in the L2_SM_P_E Data Release Version 1 and 2 assessment reports [61, 63], 

which also includes a more complete description of the L2_SM_P_E product.  The 

L2_SM_P_E product includes both 6 am and 6 pm retrieved soil moisture posted on a 9 

km grid.  A journal article published late in 2017 indicates that the accuracy of the 

L2_SM_P_E retrievals is similar to the accuracy of L2_SM_P retrievals [64]. 
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APPENDIX 1:  L2_SM_P Output Product Data Fields  

 

The specific details of all of the fields in the L2_SM_P and L3_SM_P output products can 

be found in the L2/3_SM_P Data Product Specification Document available from the 

NSIDC DAAC.  A summary is given in the table below, which includes some fields which 

will be retained only during the official CV period ending with the first bulk reprocessing.  

Data fields in boldface indicate fields that are new in the current release; data fields marked 

with an asterisk are available only in L2_SM_P but not in L3_SM_P. 

Data Fields Description 

tb_time_seconds Average TB sample acquisition time in a grid cell 

tb_time_utc Average TB sample acquisition time in a grid cell 

EASE_row_index Global 36-km EASE2 Grid 0-based row index 

EASE_column_index Global 36-km EASE2 Grid 0-based column index 

grid_surface_status Land (0) or water (1) based on footprint boresight 

latitude L1C_TB center latitude 

longitude L1C_TB center longitude 

latitude_centroid L1C_TB centroid latitude 

longitude_centroid L1C_TB centroid longitude 

boresight_incidence L1C_TB incidence angle 

tb_h_corrected H-polarized TB with water correction 

tb_v_corrected V-polarized TB with water correction 

tb_h_uncorrected L1C_TB uncorrected H-polarized TB 

tb_v_uncorrected L1C_TB uncorrected V-polarized TB 

surface_water_fraction_mb_h H-polarized antenna-gain-weighted water fraction 

surface_water_fraction_mb_v V-polarized antenna-gain-weighted water fraction 

tb_3_corrected L1C_TB uncorrected 3rd Stokes parameter 

tb_4_corrected L1C_TB uncorrected 4th Stokes parameter 

tb_qual_flag_h Quality flag of L1C_TB H-polarized TB 

tb_qual_flag_v Quality flag of L1C_TB V-polarized TB 

tb_qual_flag_3 Quality flag of L1C_TB 3rd Stokes parameter 

tb_qual_flag_4 Quality flag of L1C_TB 4th Stokes parameter 

static_water_body_fraction Areal fraction of static water 

radar_water_body_fraction Set to static_water_body_fraction 

freeze_thaw_fraction Areal fraction of freeze/thaw state 

soil_moisture Retrieved soil moisture using the SCA-V algorithm 

soil_moisture_option1 * Retrieved soil moisture using the SCA-H algorithm 

soil_moisture_option2 * Retrieved soil moisture using the SCA-V algorithm 

soil_moisture_option3 * Retrieved soil moisture using the DCA algorithm 

soil_moisture_option4 * Retrieved soil moisture using the MPRA algorithm 

soil_moisture_option5 * Retrieved soil moisture using the E-DCA algorithm 

vegetation_opacity Retrieved ‘tau’ parameter derived from NDVI 

vegetation_opacity_option1 * Retrieved ‘tau’ parameter derived from NDVI 

vegetation_opacity_option2 * Retrieved ‘tau’ parameter derived from NDVI 

vegetation_opacity_option3 * Retrieved ‘tau’ parameter 
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vegetation_opacity_option4 * Retrieved ‘tau’ parameter 

vegetation_opacity_option5 * Retrieved ‘tau’ parameter 

retrieval_qual_flag Quality flag of retrieved soil moisture using SCA-V 

retrieval_qual_flag_option1 * Quality flag of retrieved soil moisture using SCA-H 

retrieval_qual_flag_option2 * Quality flag of retrieved soil moisture using SCA-V 

retrieval_qual_flag_option3 * Quality flag of retrieved soil moisture using DCA 

retrieval_qual_flag_option4 * Quality flag of retrieved soil moisture using MPRA 

retrieval_qual_flag_option5 * Quality flag of retrieved soil moisture using E-DCA 

soil_moisture_error Error of retrieved soil moisture using SCA-V 

surface_flag Surface conditions that indicate retrievability 

vegetation_water_content Vegetation water content derived from NDVI 

surface_temperature Effective soil temperature 

albedo Single-scattering albedo 

roughness_coefficient ‘h’ parameter 

landcover_class Top three dominant IGBP land cover classes 

landcover_class_fraction Top three dominant land cover class fractions 
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APPENDIX 2:  L2_SM_P_E Output Product Data Fields  

 

The specific details of all of the fields in the L2_SM_P_E and L3_SM_P_E output products 

can be found in the L2/3_SM_P_E Data Product Specification Document available from 

the NSIDC DAAC.  A summary is given in the table below, which includes some fields 

which will be retained only during the official CV period ending with the first bulk 

reprocessing.  Data fields in boldface indicate fields that are new in the current release; 

data fields marked with an asterisk are available only in L2_SM_P_E but not in 

L3_SM_P_E. 

Data Fields Description 

tb_time_seconds Average TB sample acquisition time in a grid cell 

tb_time_utc Average TB sample acquisition time in a grid cell 

EASE_row_index Global 9-km EASE2 Grid 0-based row index 

EASE_column_index Global 9-km EASE2 Grid 0-based column index 

grid_surface_status Land (0) or water (1) based on footprint boresight 

latitude L1C_TB_E center latitude 

longitude L1C_TB_E center longitude 

latitude_centroid L1C_TB_E centroid latitude 

longitude_centroid L1C_TB_E centroid longitude 

boresight_incidence L1C_TB_E incidence angle 

tb_h_corrected H-polarized TB with water correction 

tb_v_corrected V-polarized TB with water correction 

tb_h_uncorrected L1C_TB_E uncorrected H-polarized TB 

tb_v_uncorrected L1C_TB_E uncorrected V-polarized TB 

surface_water_fraction_mb_h H-polarized antenna-gain-weighted water fraction 

surface_water_fraction_mb_v V-polarized antenna-gain-weighted water fraction 

tb_3_corrected L1C_TB_E uncorrected 3rd Stokes parameter 

tb_4_corrected L1C_TB_E uncorrected 4th Stokes parameter 

tb_qual_flag_h Quality flag of L1C_TB_E H-polarized TB 

tb_qual_flag_v Quality flag of L1C_TB_E V-polarized TB 

tb_qual_flag_3 Quality flag of L1C_TB_E 3rd Stokes parameter 

tb_qual_flag_4 Quality flag of L1C_TB_E 4th Stokes parameter 

static_water_body_fraction Areal fraction of static water 

radar_water_body_fraction Set to static_water_body_fraction 

freeze_thaw_fraction Areal fraction of freeze/thaw state 

soil_moisture Retrieved soil moisture using the SCA-V algorithm 

soil_moisture_option1 * Retrieved soil moisture using the SCA-H algorithm 

soil_moisture_option2 * Retrieved soil moisture using the SCA-V algorithm 

soil_moisture_option3 * Retrieved soil moisture using the DCA algorithm 

soil_moisture_option4 * Retrieved soil moisture using the MPRA algorithm 

soil_moisture_option5 * Retrieved soil moisture using the E-DCA algorithm 

vegetation_opacity Retrieved ‘tau’ parameter derived from NDVI 

vegetation_opacity_option1 * Retrieved ‘tau’ parameter derived from NDVI 

vegetation_opacity_option2 * Retrieved ‘tau’ parameter derived from NDVI 
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vegetation_opacity_option3 * Retrieved ‘tau’ parameter 

vegetation_opacity_option4 * Retrieved ‘tau’ parameter 

vegetation_opacity_option5 * Retrieved ‘tau’ parameter 

retrieval_qual_flag Quality flag of retrieved soil moisture using SCA-V 

retrieval_qual_flag_option1 * Quality flag of retrieved soil moisture using SCA-H 

retrieval_qual_flag_option2 * Quality flag of retrieved soil moisture using SCA-V 

retrieval_qual_flag_option3 * Quality flag of retrieved soil moisture using DCA 

retrieval_qual_flag_option4 * Quality flag of retrieved soil moisture using MPRA 

retrieval_qual_flag_option5 * Quality flag of retrieved soil moisture using E-DCA 

soil_moisture_error Error of retrieved soil moisture using SCA-V 

surface_flag Surface conditions that indicate retrievability 

vegetation_water_content Vegetation water content derived from NDVI 

surface_temperature Effective soil temperature 

albedo Single-scattering albedo 

roughness_coefficient ‘h’ parameter 

landcover_class Most dominant IGBP land cover classes 

 

 

 


